帮助 关于我们

返回检索结果

火山碎屑密度流沉积机制研究———以松辽盆地东南隆起区九台地区白垩系营城组火山碎屑岩为例
Sedimentary mechanism of pyroclastic density currents: a case study based on the pyroclastic rocks of the Cretaceous Yingcheng Formation in the Jiutai Area,Southeast Uplift of the Songliao Basin

查看参考文献123篇

刘润超 1   黄玉龙 2 *   邹洁琼 3  
文摘 火山碎屑密度流是一种危险的火山活动现象,也是一种重要的盆地物源供给方式,对其沉积机制的研究具有灾害预防和油气勘探的双重意义。松辽盆地东南隆起区九台营城煤矿地区白垩系营城组古火山机构保存良好,发育有典型的火山碎屑密度流沉积物。本文在精细刻画火山碎屑岩的岩石结构、沉积构造的基础上,运用薄片观察和沉积物粒度统计的方法,从物质来源、搬运机制和就位方式角度系统地分析了火山碎屑密度流的整个沉积过程,并结合国内外火山学、沉积学的研究进展探讨了不同浓度火山碎屑密度流的沉积机制。研究区内的火山碎屑密度流沉积物可以划分为五种微相:①块状熔结角砾凝灰岩微相;②无序含集块凝灰角砾岩微相;③逆粒序或双粒序角砾凝灰岩微相;④正粒序角砾凝灰岩微相;⑤韵律层理凝灰岩微相。第一种微相具有熔结结构,可能形成于高挥发分岩浆喷发柱的垮塌,火山碎屑密度流的就位温度较高;后四种微相具有正常火山碎屑岩结构,可能形成于火山口的侧向爆炸,火山碎屑密度流的就位温度中等。沉积块状熔结角砾凝灰岩微相的火山碎屑密度流具有黏性碎屑流的流体特征,沉积物整体冻结就位;沉积无序含集块凝灰角砾岩微相和逆粒序或双粒序角砾凝灰岩微相的火山碎屑密度流具有颗粒流的流体特征,沉积物整体冻结就位;沉积正粒序角砾凝灰岩微相和韵律层理凝灰岩微相的火山碎屑密度流具有湍流的流体特征,沉积物连续加积就位。火山碎屑密度流的颗粒浓度是一个连续变量,但流体性质可能会发生突变,稀释的火山碎屑密度流的沉积机制符合下部流动边界模型,稠密的火山碎屑密度流的沉积机制符合层流(碎屑流或颗粒流)模型。
其他语种文摘 Pyroclastic density currents(PDCs)are among the most dangerous volcanic phenomenaand can be important mechanisms of sediment supply in volcanic-affected basins,and for this are extensively studied to address the associated issues in hazard assessment and in hydrocarbon exploration.Several ancient volcanic edifices of the lower Cretaceous are well preserved in the Yingcheng Coal Mine area of Jiutai,Jilin Province,and contain deposits of PDCs.Based on detailed description of the lithology textures and sedimentary structures of the pyroclastic rocks,this paper systematically analyzes the sedimentation process of PDCs from the perspectives of material source,transport mechanism and emplacement pattern, by taking the clasts microscopic characters and grain size distribution into account.The sedimentary mechanisms of PDCs with different particle concentrations are discussed in the light of new theoretical progress in volcanology and sedimentology.The pyroclastic rocks in the study area can be categorized into five microfacies:(1)massive welded lapilli tuffs;(2)disorganized block-bearing lapilli tuffs;(3)inversely graded or doubly graded lapilli tuffs;(4)normally graded lapilli tuffs;and(5)rhythmically bedded tuffs. The type(1)with high-grade welding fabrics were formed by column collapse and emplaced at relatively high temperatures.The latter four types with normal pyroclastic structures were formed by lateral blasts and emplaced at moderate temperatures.The PDCs that deposited massive welded lapilli tuffs are inferred to have similar rheological characteristics to cohesive debris flows and come to rest en mass.The PDCs that formed disorganized block-bearing lapilli tuffs and reverse grading or double grading lapilli tuffs had rheological similarities to non-cohesive grain flows and also came to an abrupt halt.The PDCs with normal grading lapilli tuffs and rhythmic bedding tuffs were analogous to turbulent flows in which sediments were deposited by progressive aggradation.Although PDCs encompass a continuous spectrum of particle concentration,there is a possibility of abrupt jumps in current behavior.The flow boundary zone approach is reasonable for explaining the depositional mechanism of dilute PDCs;however,the laminar flow model (debris flow or grain flow)is more suitable for very concentrated PDCs.
来源 地质学报 ,2019,93(4):879-898 【核心库】
DOI 10.19762/j.cnki.dizhixuebao.2019102
关键词 火山碎屑密度流 ; 火山碎屑岩 ; 粒度分析 ; 搬运和沉积机制 ; 白垩系营城组 ; 松辽盆地
地址

1. 北京大学地球与空间科学学院, 造山带与地壳演化教育部重点实验室, 北京, 100871  

2. 吉林大学地球科学学院, 长春, 130061  

3. 中国科学院广州地球化学研究所, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 0001-5717
学科 地质学
文献收藏号 CSCD:6472969

参考文献 共 123 共7页

1.  Allen J R L. Sedimentary Structures:Their Character and Physical Basis(Volumes I),1982:1-593 被引 1    
2.  Allen J R L. Parallel lamination developed from upper-stage plane beds:A model based on the larger coherent structures of the turbulent boundary layer. Sedimentary Geology,1984,39(3):227-242 被引 4    
3.  Andrews B J. Experimental study of turbulence, sedimentation,and coignimbrite mass partitioning in dilute pyroclastic density currents. Journal of Volcanology and Geothermal Research,2012,225/226(3):30-44 被引 1    
4.  Astis G D. Eruptive and emplacement mechanisms of widespread fine-grained pyroclastic deposits on Vulcano Island(Italy). Bulletin of Volcanology,1997,59(2):87-102 被引 1    
5.  Bagnold R A. Auto-Suspension of Transported Sediment; Turbidity Currents. Proceedings of the Royal Society of London (Series A),1962,265:315-319 被引 13    
6.  Bear A N. The implications of spatter,pumice and lithic clast rich proximal co-ignimbrite lag breccias on the dynamics of caldera forming eruptions:The 151ka Sutrieruption,Vico Volcano,Central Italy. Journal of Volcanology and Geothermal Research,2009,181(1/2):1-24 被引 1    
7.  Bell H S. Studies for Students:Density Currents as Agents for Transporting Sediments. Journal of Geology,1942,50(5):512-547 被引 4    
8.  Bouma A H. Sedimentology of some Flysch deposits:a graphic approach to facies interpretation,1962:95-101 被引 1    
9.  Brand B D. An unusually energetic basaltic phreatomagmatic eruption: Using deposit characteristics to constrain dilute pyroclastic density current dynamics. Journal of Volcanology and Geothermal Research,2012,243/244:81-90 被引 1    
10.  Brand B D. Dynamics of pyroclastic density currents:Conditions that promote substrate erosionand selfchannelization-Mount St Helens, Washington (USA). Journal of Volcanology and Geothermal Research,2014,276(7):189-214 被引 2    
11.  Branney M J. A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of highgrade ignimbrite. Bulletin of Volcanology,1992,54(6):504-520 被引 3    
12.  Branney M J. Giant bed from a sustained catastrophic density current flowing over topography:Acatlan ignimbrite,Mexico. Geology,1997,25(2):115-118 被引 1    
13.  Branney M J. Pyroclastic density currents and the sedimentation of ignimbrites,2002:1-143 被引 3    
14.  Breard E C P. Inside pyroclastic density currentsuncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth and Planetary Science Letters,2017,458:22-36 被引 1    
15.  Brown R J. Bypassing and diachronous deposition from density currents: Evidence from a giant regressive bed form in the Poris ignimbrite,Tenerife,Canary Islands. Geology,2004,32(5):445-448 被引 1    
16.  Brown R J. Deposits of pyroclastic density currents. The Encyclopedia of Volcanoes(Second Edition),2015:631-648 被引 1    
17.  Burgisser A. Reconciling pyroclastic flow and surge:the multiphase physics of pyroclastic density currents. Earth and Planetary Science Letters,2002,202:405-418 被引 1    
18.  Carey S N. Transport and Deposition of Tephra by Pyroclastic Flows and Surges. Special Publications,45,1991:39-57 被引 1    
19.  Cas R. A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits:Descriptive to genetic. Journal of Volcanology and Geothermal Research,2008,174(1/3):226-240 被引 4    
20.  Cas R A F. Volcanic Successions:Modern and Ancient,1987:93-126 被引 1    
引证文献 3

1 曾凡成 火山活动影响下的致密砂岩气储层特征及气藏富集主控因素 地质学报,2021,95(3):895-912
被引 2

2 魏小燕 应用扫描电镜-能谱分析技术研究松辽盆地营城组致密砂岩中火山灰的微观特征 电子显微学报,2022,41(2):148-153
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号