帮助 关于我们

返回检索结果

格子Boltzmann方法模拟多孔介质惯性流的边界条件改进
A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION

查看参考文献40篇

程志林 1   宁正福 1   曾彦 2   王庆 1   隋微波 1   张文通 1   叶洪涛 1   陈志礼 1  
文摘 格子Boltzmann方法可以有效地模拟水动力学问题,边界处理方法的选择对于可靠的模拟计算至关重要.本文基于多松弛时间格子Boltzmann模型开展了不同边界条件下,周期对称性结构和不规则结构中流体流动模拟,阐述了不同边界条件的精度和适用范围.此外,引入一种混合式边界处理方法来模拟多孔介质惯性流,结果表明:对于周期性对称结构流动模拟,体力格式边界条件和压力边界处理方法是等效的,两者都能精确地捕捉流体流动特点;而对于非周期性不规则结构,两种边界处理方法并不等价,体力格式边界条件只适用于周期性结构;由于广义化周期性边界条件忽略了垂直主流方向上流体与固体格点的碰撞作用,同样不适合处理不规则模型;体力–压力混合式边界格式能够用来模拟周期性或非周期性结构流体流动,在模拟多孔介质流体惯性流时,比压力边界条件有更大的应用优势,可以获得更大的雷诺数且能保证计算的准确性.
其他语种文摘 The lattice Boltzmann method has been considered as an effective method for the simulation of hydrodynamic flows. Handling the boundary condition accurately in simulation is extremely essential for a reliable study. In this paper, a multiple relaxation time lattice Boltzmann model with different boundary conditions was applied to mimic the flows in periodically symmetric and irregular structures. The scope of application and accuracy for different boundary conditions in various geometries was investigated. In addition, a hybrid boundary treatment method was introduced to simulate the non-Darcy flow in porous media, the simulation results of which were also compared to the results obtained using pressure boundary condition. The results show that for the symmetric and periodic flow simulation, both the body force and the pressure driven boundary treatments are perfectly equivalent and both can accurately capture the flow characteristics. While for the fluid flow in irregular structures, the body force and pressure boundary conditions are not equivalent, and the body force one has limited use and can only be applied to periodic structures. This implies that one must be cautious of the reliability of modeling when conducting model validation with simple structures. It seems that the regular structures could be inadequate to validate the modeling, which depends on the research issues, i.e., the flow patterns in what kinds of structures. Furthermore, the generalized periodic boundary condition proposed by previous authors combines periodic density momentum with a pressure gradient in one dimension is also not appropriate to conduct flow simulation in irregular models since this method ignores the effect of asymmetric obstacles in the direction perpendicular to the main streamlines. Moreover, the hybrid boundary condition can be used to perform flow simulations not only in periodic structures but also the irregular ones. In particular, for the inertial flow of fluids in porous media, the relatively high Reynolds number can be achieved readily with the hybrid boundary condition. For the pressure driven boundary condition, the pressure gradient comes from the density difference between the inlet and outlet. To provide a higher Reynolds number, it is necessary to implement a great density contrast in inlet and outlet nodes. However, this approach is inconsistent with physical situation and causes undesirable errors in simulation. All in all, the hybrid boundary condition has greater advantages over the pressure boundary condition.
来源 力学学报 ,2019,51(1):124-134 【核心库】
DOI 10.6052/0459-1879-18-179
关键词 格子Boltzmann方法 ; 边界条件 ; 蠕动流 ; 惯性流
地址

1. 中国石油大学(北京), 油气资源与探测国家重点实验室, 北京, 102249  

2. 中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金 ;  中国石油天然气集团公司石油科技中青年创新基金
文献收藏号 CSCD:6461444

参考文献 共 40 共2页

1.  柳占立. 页岩气高效开采的力学问题与挑战. 力学学报,2017,49(3):507-516 被引 28    
2.  刘文超. 低渗透煤层气藏中气--水两相不稳定渗流动态分析. 力学学报,2017,49(4):828-835 被引 7    
3.  郑艺君. 多孔介质壁面剪切湍流速度时空关联的研究. 力学学报,2016,48(6):1308-1318 被引 4    
4.  Sukop M C. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers,2007 被引 7    
5.  Kruger T. The Lattice Boltz-mann Method: Principles and Practice,2016 被引 1    
6.  Chen L. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity. Scientific Reports,2015,5:8089 被引 13    
7.  Chukwudozie C. Pore scale inertial flow simulations in 3-D smooth and rough sphere packs using lattice Boltzmann method. AIChE Journal,2013,59(12):4858-4870 被引 1    
8.  Arabjamaloei R. Numerical study of inertial effects on per-meability of porous media utilizing the lattice Boltzmann method. Journal of Natural Gas Science and Engineering,2017,44:22-36 被引 1    
9.  Kakouei A. Cessation of Darcy regime in gas flow through porous media using LBM: Comparison of pressure gradient approaches. Journal of Natural Gas Science and Engineering,2017,45:693-705 被引 1    
10.  Zhao H. Relative permeability of two im-miscible fluids flowing through porous media determined by lattice Boltzmann method. International Communications in Heat and Mass Transfer,2017,85:53-61 被引 2    
11.  Zhao T. Pore scale characteristics of gas flow in shale matrix determined by the regularized lattice Boltzmann method. Chemical Engineering Science,2018,187:245-255 被引 2    
12.  Kandhai D. Implementation aspects of 3D lattice-BGK: Boundaries, accuracy, and a new fast relaxation method. Journal of Computational Physics,1999,150(2):482-501 被引 4    
13.  Zhang J. Pressure boundary condition of the lattice Boltz-mann method for fully developed periodic flows. Physical Review E,2006,73(4):047702 被引 3    
14.  Graser O. Adaptive generalized periodic boundary con-ditions for lattice Boltzmann simulations of pressure-driven flows through confined repetitive geometries. Physical Review E,2010,82(1):016702 被引 2    
15.  Newman M S. Lattice Boltzmann simulation of non-Darcy flow in stochastically generated 2D porous media geometries. SPE Journal,2013,18(1):12-26 被引 4    
16.  Chai Z. Non-Darcy flow in disordered porous me-dia: A lattice Boltzmann study. Computers & Fluids,2010,39(10):2069-2077 被引 4    
17.  Sukop M C. Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods. Water Resources Research,2013,49(1):216-230 被引 5    
18.  Bhatnagar P L. A model for collision processes in gases. I. Small amplitude processes in charged and neutral onecomponent systems. Physical Review,1954,94(3):511-525 被引 216    
19.  Humieres D. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences,2002,360(1792):437 被引 1    
20.  Lallemand P. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E,2000,61(6):6546-6562 被引 85    
引证文献 7

1 杨秋足 一种基于黎曼解处理大密度比多相流SPH 的改进算法 力学学报,2019,51(3):730-742
被引 6

2 徐建于 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟 力学学报,2019,51(4):998-1011
被引 4

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号