帮助 关于我们

返回检索结果

面向抓取作业的飞行机械臂系统及其控制
Towards Grasping Task: System and Control of an Aerial Manipulator

查看参考文献27篇

张广玉 1,2   何玉庆 1   代波 1,2   谷丰 1   杨丽英 1   韩建达 1   刘光军 3  
文摘 面向飞行机械臂的飞行抓取作业,提出了一个由六旋翼飞行机器人和7自由度机械臂组成的飞行机械臂系统.系统采用分离式控制策略,即飞行机器人和机械臂各有一个控制器.机械臂运动所引起的系统质心和转动惯量的变化量及其导数被用来估计机械臂对飞行机器人的扰动力和力矩.为了减弱机械臂扰动对六旋翼飞行机器人的飞行控制性能的影响,提出了扰动补偿H_∞鲁棒飞行控制器.实验结果表明,与没有扰动补偿的控制器相比,当机械臂运动时所提出的扰动补偿H_∞棒控制器对系统的飞行控制性能有明显的提升效果.最后,目标物抓取作业实验验证了所提出的飞行机械臂系统的可靠性.
其他语种文摘 Towards target grasping by an aerial manipulator, an aerial manipulator system composed of a hex-rotor and a 7-DoF (degree of freedom) manipulator is presented, for which a separated control strategy is adopted, that is, the aerial vehicle and the manipulator are controlled separately. The variations of the system CoM (center of mass), inertia matrix caused by the manipulator movement and the corresponding derivatives are used to estimate the disturbing forces and moments on the aerial vehicle exerted by the manipulator. To attenuate the effect of the manipulator disturbance on the flight control performance of hex-rotor, a disturbance compensation H_∞ robust flight controller is designed. The experiment results show that the disturbance compensation H_∞ robust controller can obviously improve the flight performance of the aerial vehicle when the manipulator is moving, comparing with the controller without disturbance compensation. Finally, aerial grasping experiments are conducted to validate the reliability of the proposed aerial manipulator system.
来源 机器人 ,2019,41(1):19-29 【核心库】
DOI 10.13973/j.cnki.robot.180127
关键词 飞行机械臂 ; 飞行抓取 ; 飞行机器人 ; 鲁棒控制
地址

1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016  

2. 中国科学院大学, 北京, 100049  

3. 瑞尔森大学, 加拿大, 多伦多, M5B 2K3

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:6439113

参考文献 共 27 共2页

1.  杨斌. 作业型飞行机器人研究现状与展望. 机器人,2015,37(5):628-640 被引 24    
2.  宋大雷. 3自由度旋翼飞行机械臂系统动力学建模与预测控制方法. 机器人,2015,37(2):152-160 被引 9    
3.  Kutia J R. Initial flight experiments of a canopy sampling aerial manipulator. International Conference on Unmanned Aircraft Systems,2016:1359-1365 被引 2    
4.  Torre A. A prototype of aerial manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems,2012:2653-2654 被引 2    
5.  Korpela C. Towards valve turning using a dualarm aerial manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems,2014:3411-3416 被引 4    
6.  Bartelds T. Compliant aerial manipulators: Toward a new generation of aerial robotic workers. IEEE Robotics and Automation Letters,2016,1(1):477-483 被引 7    
7.  Kamel M. Design and modeling of dexterous aerial manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems,2016:4870-4876 被引 1    
8.  Huber F. First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. IEEE/RSJ International Conference on Intelligent Robots and Systems,2013:3452-3457 被引 3    
9.  Thomas J. Toward autonomous avianinspired grasping for micro aerial vehicles. Bioinspiration & Biomimetics,2014,9(2):025010 被引 9    
10.  Yang B. Rotor-flying manipulator: Modeling, analysis, and control. Mathematical Problems in Engineering,2014:492965 被引 4    
11.  Lippiello V. Cartesian impedance control of a UAV with a robotic arm. IFAC Proceedings Volumes,2012,10(1):704-709 被引 3    
12.  Lippiello V. Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm. IEEE/RSJ International Conference on Intelligent Robots and Systems,2012:3768-3773 被引 1    
13.  Sharifi M. Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator. Advanced Robotics,2015,29(3):171-186 被引 2    
14.  Yang H. Dynamics and control of quadrotor with robotic manipulator. IEEE International Conference on Robotics and Automation,2014:5544-5549 被引 3    
15.  Garimella G. Towards model-predictive control for aerial pick-and-place. IEEE International Conference on Robotics and Automation,2015:4692-4697 被引 3    
16.  Caccavale F. Adaptive control for UAVs equipped with a robotic arm. IFAC Proceedings Volumes,2014,19:11049-11054 被引 5    
17.  Jimenez-Cano A E. Modelling and control of an aerial manipulator consisting of an autonomous helicopter equipped with a multi-link robotic arm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2016,230(10):1860-1870 被引 5    
18.  Kondak K. Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks. International Journal of Advanced Robotic Systems,2013,10:No.145 被引 3    
19.  Khalifa A. A new quadrotor manipulation system: Modeling and point-to-point task space control. International Journal of Control, Automation and Systems,2017,15(3):1434-1446 被引 2    
20.  Fanni M. A new 6-DOF quadrotor manipulation system: Design, kinematics, dynamics and control. IEEE/ASME Transactions on Mechatronics,2017,22(3):1315-1326 被引 5    
引证文献 8

1 张广玉 面向自由飞行目标捕获的四旋翼最优轨迹规划 信息与控制,2019,48(4):469-476,485
被引 2

2 孟祥冬 接触作业型飞行机械臂系统的力/位置混合控制 机器人,2020,42(2):167-178
被引 5

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号