帮助 关于我们

返回检索结果

气动人工肌肉拮抗关节的力与刚度独立控制
Independent Force and Stiffness Control for Antagonistic Joint Driven by Pneumatic Artificial Muscles

查看参考文献20篇

张道辉 1,2 *   赵新刚 1   韩建达 3   马红阳 4   张弼 1  
文摘 针对柔性仿生关节难以实现力与刚度独立控制的问题,建立了一种新的气动人工肌肉等效弹簧模型及关节力和刚度模型,设计了一种双输入双输出滑模控制器,来实现对气动人工肌肉拮抗关节力与刚度的独立控制.最后,搭建了气动人工肌肉驱动的拮抗关节实验平台,在关节位置固定和开放两种状况下进行了实验研究,验证所提方法的有效性;在不同负载情况下进行了对比实验,验证所提方法的通用性.所提出的建模和控制方法综合考虑了仿生关节位置、力和刚度相对独立控制,在机器人与人或环境互相作用的场合有很好的应用前景.
其他语种文摘 In view of the problem that it is hard to achieve independent force and stiffness control for flexible bionic joints, a new equivalent spring model of pneumatic artificial muscle and a joint force and stiffness model are built, and a twoinput two-output sliding model controller is constructed to achieve independent force and stiffness control for antagonistic joint driven by pneumatic artificial muscles. Finally, an experimental platform of the pneumatic artificial muscle-driven antagonistic joint is set up. Experiments are conducted to verify the effectiveness of the proposed method under both fixed and open joint position conditions. A comparative experiment is conducted under different loads to verify the universality of the proposed method. The proposed modeling and control scheme comprehensively considers the relatively independent control among position, force and stiffness of the bionic joint, and has a great application prospect in the scenes where a robot interacts with human or environment.
来源 机器人 ,2018,40(5):587-596 【核心库】
DOI 10.13973/j.cnki.robot.180256
关键词 气动人工肌肉 ; 拮抗关节 ; 刚度控制 ; 滑模控制
地址

1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016  

2. 中国科学院大学, 北京, 100049  

3. 南开大学计算机与控制工程学院, 天津, 300350  

4. 东北大学信息科学与工程学院, 辽宁, 沈阳, 110004

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 自动化技术、计算机技术
基金 国家863计划 ;  国家自然科学基金
文献收藏号 CSCD:6435725

参考文献 共 20 共1页

1.  何玉庆. 与人共融-机器人技术发展的新趋势. 机器人产业,2015(5):74-80 被引 29    
2.  陶国良. 气动人工肌肉的发展趋势与研究现状. 机械工程学报,2009,45(10):75-83 被引 20    
3.  Andrikopoulos G. A survey on applications of pneumatic artificial muscles. 19th Mediterranean Conference on Control and Automation,2011:1439-1446 被引 2    
4.  Sarosi J. Dynamic modeling of a pneumatic muscle actuator with two-direction motion. Mechanism and Machine Theory,2015,85:25-34 被引 5    
5.  Park Y L. Design and control of a bio-inspired soft wearable robotic device for ankle foot rehabilitation. Bioinspiration and Biomimetics,2014,9(1):016007 被引 10    
6.  Ahn K K. Design and implementation of an adaptive recurrent neural networks (ARNN) controller of the pneumatic artificial muscle (PAM) manipulator. Mechatronics,2009,19(6):816-828 被引 11    
7.  Chang M K. T-S fuzzy model-based tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles. Control Engineering Practice,2011,19(12):1442-1449 被引 7    
8.  于海涛. 基于气动肌腱驱动的拮抗式仿生关节设计与控制. 机械工程学报,2012,48(17):1-9 被引 11    
9.  Jouppila V T. Sliding mode control of a pneumatic muscle actuator system with a PWM strategy. International Journal of Fluid Power,2014,15(1):19-31 被引 5    
10.  Wu J. Nonlinear disturbance observer based dynamic surface control for trajectory tracking of pneumatic muscle system. IEEE Transactions on Control Systems Technology,2014,22(2):440-455 被引 8    
11.  Zhao L. Active disturbance rejection trajectory tracking control for two-joint driven by pneumatic artificial muscles. International Conference on Fluid Power and Mechatronics,2015:972-977 被引 1    
12.  王杨. 基于鲁棒建模的气动人工肌肉驱动仿生关节的轨迹跟踪控制. 机器人,2016,38(2):248-256 被引 5    
13.  Wang X. Development of an antagonistic bionic joint controller for a musculoskeletal quadruped. IEEE/RSJ International Conference on Intelligent Robots and Systems,2013:4466-4471 被引 3    
14.  刘荣. 并联机构柔顺控制及人工肌肉驱动研究,1996 被引 3    
15.  Tonietti G. Adaptive simultaneous position and stiffness control for a soft robot arm. IEEE/RSJ International Conference on Intelligent Robots and Systems,2002:1992-1997 被引 1    
16.  Nakamura T. Joint stiffness and position control of an artificial muscle manipulator for instantaneous loads using a mechanical equilibrium model. Advanced Robotics,2011,25(3/4):387-406 被引 3    
17.  朱坚民. 气动肌腱驱动的拮抗式仿生关节位置/刚度控制. 机械工程学报,2017,53(13):64-74 被引 5    
18.  Noritsugu T. Hybrid-type position and force control of robot manipulator using artificial rubber muscle. Transactions of the Japan Society of Mechanical Engineers, Part C,1995,61(586):309-314 被引 1    
19.  Kang B S. Compliance characteristic and force control of antagonistic actuation by pneumatic artificial muscles. Meccanica,2014,49(3):565-574 被引 3    
20.  Zhang D H. Active model-based control for pneumatic artificial muscle. IEEE Transactions on Industrial Electronics,2017,64(2):1686-1695 被引 5    
引证文献 4

1 龚道雄 一种气动肌肉拮抗驱动机器人关节的类人运动控制方法 机器人,2019,41(6):803-812
被引 3

2 管清华 气动软体机器人发展现状与趋势 中国科学. 技术科学,2020,50(7):897-934
被引 11

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号