帮助 关于我们

返回检索结果

东北地区5个物种潜在栖息地变化与优化保护规划
Potential distribution and conservation priority areas of five species in Northeast China

查看参考文献34篇

文摘 气候变化广泛影响着物种多样性及其分布变迁。优化模型模拟结果,获取气候变化影响下的优先保护区域将为制定应对气候变化的物种保护政策或行动提供理论依据,提升保护绩效。选取东北地区五种代表性动物,包括黑熊(Ursus thibetanus)、驼鹿(Alces alces)、水獭(Lutrα lutra)、紫貂(Martes zibellina)及黑嘴松鸡(Tetrao parvirostris);结合最大熵模型(Maxent)模拟在不同RCP情景下未来3个年代(2030s,2050s,2070s)的物种潜在栖息地。根据九个常用气候模式的评价结果,获取东北地区合适的气候模式,了解气候变化对物种潜在栖息地的影响,同时开展物种保护规划,识别保护空缺,为应对气候变化、保持生物多样性提供支持。结果显示,在气候变化背景下物种潜在栖息地面积整体呈现下降趋势,但不同气候模式之间存在差异;评价结果推荐CCSM4、NorESMl-M、HadGEM2-AO及GFDL-CM3气候模式,推荐在东北地区使用以上气候模式进行物种未来潜在分布的研究。5个物种潜在栖息地平均面积变化率分别为-62.16%, -73.93%, -78.46%(2030s, 2050s, 2070s)。综合5个重点保护物种的保护优先区,大兴安岭的呼中、汗马与额尔古纳国家级自然保护区,延边地区的天佛指山、老爷岭东北虎、珲春东北虎与汪清原麝国家级自然保护区,长白山国家级自然保护区是气候变化下物种保护的热点区域。
其他语种文摘 Global climate change has already altered species distribution and diversity. It is significant to study the priority protection area of species to develop dynamic strategies for biodiversity conservation under climate change scenarios. In the current study, we estimated the potential distribution of five species (Asian black bear (Ursus thibetanus),moose (Alces alces),otter (Lutra lutra),sable (Martes zibellina),and black-billed capercaillie (Tetrao parvirostris)) in Northeast China over time using Maxent. We used nine general circulation models (GCMs),and four representative concentration pathways (RCPs) to derive future climate projections over three time periods (2030,2050,2070),and then modeled species distributions using these predicted environmental measurements for each time period. Zonation was combined with the results from Maxent to identify priority areas, which were further used to optimize the current nature reserve systems. According to the evaluation results of nine GCMs, appropriate climate models in Northeast China were obtained. Based on the GAP analysis for these conservation priority areas, proposals for priority conservation plans were made. The results showed that climate change in the study area would cause a considerable decline in the total distribution areas of the five species. However, different projections by GCMs may cause uncertainty of the predicted distributions. By comparing the species potential distributions, these four GCMs (CCSM4, NorESMl-M, HadGEM2-AO, and GFDL-CM3) performed well in Northeast China. The mean percentage of species potential range loss increased, as 62.16% range loss by 2030; -73.93% by 2050; and -78.46% by 2070. Conservation priority areas were mainly distributed in a few national nature reserves in the Changbai,Lesser Khingan,Greater Hinggan,and Wanda mountains.
来源 生态学报 ,2019,39(3):1082-1094 【核心库】
DOI 10.5846/stxb201804130847
关键词 物种分布预测 ; 气候模式 ; 最大熵模型 ; 物种分布变迁 ; 空间优化模型
地址

北京林业大学自然保护区学院, 北京, 100083

语种 中文
文献类型 研究性论文
ISSN 1000-0933
基金 国家科技支撑计划项目
文献收藏号 CSCD:6419047

参考文献 共 34 共2页

1.  Butchart S H M. Global biodiversity: indicators of recent declines. Science,2010,328(5982):1164-1168 被引 122    
2.  Noss R F. Saving Nature's Legacy: Protecting and Restoring Biodiversity,1994 被引 7    
3.  Beaugrand G. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nature Climate Change,2015,5(7):695-701 被引 1    
4.  Willis K J. Biodiversity hotspots through time: an introduction. Philosophical Transactions of the Royal Society B,2007,362(1478):169-174 被引 1    
5.  Li J. Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China. Ecology and Evolution,2017,7(11):4003-4015 被引 7    
6.  Elith J. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics,2009,40(1):677-697 被引 146    
7.  Markovic D. Europe's freshwater biodiversity under climate change: distribution shifts and conservation needs. Diversity and Distributions,2014,20(9):1097-1107 被引 1    
8.  IPCC. What is a GCM?,2013 被引 1    
9.  IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I,II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2015:151-151 被引 1    
10.  Margules C R. Systematic conservation planning. Nature,2000,405(6783):243-253 被引 145    
11.  Vimal R. The sensitivity of gap analysis to conservation targets. Biodiversity and Conservation,2011,20(3):531-543 被引 1    
12.  郭云. 基于水鸟保护的长江流域湿地优先保护格局模拟. 生态学报,2018,38(6):1984-1993 被引 7    
13.  周桂双. C-Plan软件在自然保护区规划中的应用. 哈尔滨师范大学自然科学学报,2017,33(4):124-126 被引 2    
14.  Moilanen A. Landscape Zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biological Conservation,2007,134(4):571-579 被引 14    
15.  Lehtomaki J. Methods and workflow for spatial conservation prioritization using Zonation. Environmental Modelling & Software,2013,47(2):128-137 被引 10    
16.  Wan J Z. Planning the priority protected areas of endangered orchid species in northeastern China. Biodiversity and Conservation,2014,23(6):1395-1409 被引 8    
17.  肖静. 基于ZONATION的岷山山系多物种保护规划. 生态学报,2016,36(2):420-429 被引 6    
18.  李祯. 东北地区自然地理,1998 被引 2    
19.  蒋志刚. 中国脊椎动物红色名录. 生物多样性,2016,24(5):500-551 被引 216    
20.  张微. 气候变化对东北濒危动物驼鹿潜在生境的影响. 生态学报,2016,36(7):1815-1823 被引 20    
引证文献 4

1 檀逸虹 全球气候变化背景下秦艽生态适宜性预测 生态学杂志,2020,39(11):3766-3773
被引 6

2 赵梓伊 五种齿突蟾在横断山南潜在地理分布预测 生态学报,2022,42(7):2636-2647
被引 3

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号