帮助 关于我们

返回检索结果

泥石流性质和规模对声波特性影响的实验研究
Experimental Study on the Influence of Debris Flow Properties and Scale on Acoustic Characteristics

查看参考文献24篇

袁路 1,2   胡雨豪 3   马东涛 1,4 *   李梅 5  
文摘 泥石流的声波是泥石流声波预警的重要媒介,声波的特性从一定程度上可以反映泥石流的性质和规模。通过开展容重为1.3 t·m~(- 3)、1.5 t·m~(- 3)、1.7 t·m~(- 3)、2.0 t·m~(- 3)和不同流量(规模)的34次室内泥石流实验,采集了泥石流流速、流量(规模)数据及声波信号,采用短时傅里叶变换(STFT)和滤波器对声波信号进行处理,分析研究了泥石流容重、流量对声波最大振幅、时域频域、声波能量的影响规律。实验表明:声波振幅的高低可反映泥石流规模的大小,泥石流声波最大振幅与流量表现出线性正相关性;泥石流声波最大振幅随容重呈线性增长趋势,拟合函数系数与容重满足线性正相关性,据此可以估算泥石流的峰值流量及规模;不同容重的泥石流声波能量分布频带不同,稀性泥石流的声波能量均匀分布在高(Band3) 、中(Band2) 、低(Band1)三个频带上,过渡性泥石流的声波能量集中在中、高两个频带上,粘性泥石流的声波能量集中在中、低两个频带上。通过对声波能量分布的分析,可以对泥石流的性质和类型进行判别。
其他语种文摘 The acoustic wave of debris flow serves as an important indicator for debris flow early warning,because it conveys reliable information of the property and the scale of a moving debris flow. In this study,34 debris flow experiments were designed with combination of the varied density of 1.3 t·m ~(- 3),1.5 t·m ~(- 3),1.7 t·m ~(- 3), 2.0 t·m ~(- 3) and different volume discharge (scale) to collect the data of velocity,discharge (scale) and acoustic signal for analysis. It used the short-time Fourier transform (STFT) and filters to process acoustic signals and the quantitative relationship between peak amplitude and discharge,the distribution of acoustic energy were studied. Results showed that the peak amplitude of debris flow acoustic wave had a linearly positive correlation with its discharge. Peak amplitude increased linearly with the density,and fitting coefficient was linearly and positively correlated to density. The acoustic energy of debris flow varied with different bulk density. The acoustic energy of dilute debris flow was distributed evenly in three frequency bands: high frequency band (Band 3), middle frequency band (Band 2) and low frequency band (Band 1). The transitional debris flow behaved mainly in the middle and high frequency bands,whereas viscous debris flow presented in the middle and low frequency bands. The comprehensive understandings of debris flow acoustic characteristics by experiments would provide an insight into the early warning of debris flow for its type,scale and energy potential.
来源 山地学报 ,2018,36(6):889-897 【核心库】
DOI 10.16089/j.cnki.1008-2786.000384
关键词 泥石流 ; 性质 ; 规模 ; 声波 ; 振幅 ; 频率
地址

1. 中国科学院、水利部成都山地灾害与环境研究所, 成都, 610041  

2. 中国科学院大学, 北京, 100049  

3. 中煤科工集团重庆设计研究院, 重庆, 400016  

4. 中国科学院山地灾害与地表过程重点实验室, 中国科学院山地灾害与地表过程重点实验室, 成都, 610041  

5. 中国地质大学(北京), 北京, 100083

语种 中文
文献类型 研究性论文
ISSN 1008-2786
学科 地质学
基金 国家自然科学基金项目
文献收藏号 CSCD:6406072

参考文献 共 24 共2页

1.  秦飞. 孕震过程中次声波的产生机理. 北京工业大学学报,2006,32(6):568-572 被引 7    
2.  马大猷. 现代声学理论基础,2005:5-10 被引 1    
3.  张金山. 泥石流预警及其实施方法. 水利学报,2012,43(s2):174-180 被引 7    
4.  钟敦伦. 泥石流警报技术探索. 山地学报,2011,29(2):234-242 被引 3    
5.  章书成. 泥石流次声波警报器DFW-IⅢ型简介. 山地学报,2008(4):382 被引 2    
6.  刘敦龙. 基于次声监测的泥石流定位与实时监控方法,2015:43-54 被引 1    
7.  章书成. 泥石流早期警报系统. 山地学报,2010,28(3):379-384 被引 9    
8.  Zhang Shucheng. A comprehensive approach to the observation and prevention of debris flows in China. Natural Hazards,1993,7(1):1-23 被引 1    
9.  Chou Hsienter. Acoustic signals and geophone response induced by stony-type debris flows. Journal of The Chinese Institute of Engineers,2013,36(3):335-347 被引 1    
10.  周铭. 不同形态泥石流地声与次声特性比较研究,2014:124-128 被引 1    
11.  Kogelnig A. Infrasound produced by debris flow: propagation and frequency content evolution. Natural Hazards,2014,70(3):1713-1733 被引 7    
12.  Schimmel A. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals. Landslides,2015,13(5):1181-1196 被引 6    
13.  何德伟. 泥石流次声特性及在警报中的应用,2008:45 被引 1    
14.  李朝安. 山区铁路沿线泥石流次声监测预警方法. 声学技术,2012,31(4):351-356 被引 8    
15.  Leng Xiaopeng. Debris flows monitoring and localization using infrasonic signals. Journal of Mountain Science,2017,14(7):1279-1291 被引 2    
16.  Liu Dunlong. Visualized localization and tracking of debris flow movement based on infrasound monitoring. Landslides,2018,15(5):879-893 被引 3    
17.  周继发. 泥石流次声监测软硬件系统,2016:66 被引 1    
18.  魏高荣. 泥石流次声监测预警系统设计,2017:71-72 被引 1    
19.  崔文杰. 基于次声的泥石流监测系统设计与分析,2017:58-59 被引 1    
20.  王济. MATLAB在振动信号处理中的应用,2006:69-82 被引 18    
引证文献 2

1 胡至华 基于EEMD分形和LS - SVM的次声信号识别泥石流类型 山地学报,2020,38(4):619-629
被引 1

2 胡至华 基于广义S变换的不同类型泥石流声波试验研究 岩土工程学报,2020,42(10):1962-1968
被引 1

显示所有2篇文献

论文科学数据集

1. 泥石流冲击特性试验数据(2019-2021)

2. 西藏林芝古乡沟天磨沟培龙沟泥石流监测部分数据(2019-2020)

数据来源:
国家青藏高原科学数据中心

1. 龙溪河流域泥石流及其土地利用背景数据集(2011)

2. 岷江上游土地利用对泥石流发生敏感性分析数据集(2005-2013年)

3. 2019-2022年大柴旦飞行试验声波瞬时风速计数据集

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号