帮助 关于我们

返回检索结果

行星际背景太阳风的三维MHD数值模拟
Three-dimensional MHD simulation of interplanetary solar wind

查看参考文献48篇

杨子才 1,2,3   沈芳 1,2,3,4 *   杨易 1,3   冯学尚 1,3,4  
文摘 近地空间的太阳风参数预报具有重要的科学研究意义和实际应用价值,三维磁流体力学(MHD)数值模拟是太阳风参数预报的重要手段.本文建立了一套基于经验模型的三维MHD数值模型.模型的内边界设置在0.1天文单位(AU)处,在六片网格系统下利用TVD Lax-Friedrich格式求解理想MHD方程组,采用扩散法消除磁场的散度.模型以GONG的观测磁图作为输入数据,利用经验模型并结合卫星观测特征确定内边界条件.边界条件中保留了6个可调参数,以便适当调整参数使其方便适合模拟不同太阳活动期的太阳风.利用该模型分别模拟了2007年和2016年的背景太阳风,得到了太阳风速度、密度、温度和磁场强度,这些参数与ACE/WIND卫星观测符合较好.
其他语种文摘 The prediction of solar wind parameters near the Earth has important scientific research significance and practical application value.Three-dimensional magnetohydrodynamics(MHD) numerical simulation is a primary tool in the prediction of solar wind parameters.This paper presents a three-dimensional MHD numerical model which can be used to simulate the background solar wind in the interplanetary space.The inner boundary of the model is set at 0.1 astronomical unit (AU)and a six-component grid system is employed in the computation domain.The ideal MHD equations are solved by using the total variation diminution(TVD)Lax-Friedrich scheme,and the divergence of the magnetic field is eliminated by a diffusion method.This model uses magnetogram synoptic map images from the Global Oscillation Network Group(GONG)observation as input data. The empirical Wang-Sheeley-Arge(WSA)relation is used to assign solar wind speed at the inner boundary,while density and temperature are specified according to the characteristics of satellite observations.There are six free parameters in the boundary conditions,which can be tuned to simulate the solar wind for different phases of the solar cycle.This model is used to simulate the background solar wind in 2007 and 2016,respectively,and the simulated solar wind parameters (including speed,density,temperature,and the magnetic field strength)are in good agreement with the ACE/WIND satellite observations.
来源 地球物理学报 ,2018,61(11):4337-4347 【核心库】
DOI 10.6038/cjg2018l0515
关键词 MHD ; 太阳风 ; 模拟 ; 预报
地址

1. 中国科学院国家空间科学中心, 空间天气学国家重点实验室, 北京, 100190  

2. 山东大学(威海), 山东省光学天文与日地空间环境重点实验室, 山东, 威海, 264209  

3. 中国科学院大学, 北京, 100049  

4. 哈尔滨工业大学(深圳)空间科学与应用技术研究院, 深圳, 518055

语种 中文
文献类型 研究性论文
ISSN 0001-5733
学科 地球物理学
基金 国家自然科学基金 ;  空间天气学国家重点实验室专项研究基金 ;  山东省光学天文与日地空间环境重点实验室专项基金 ;  国家“万人计划”青年拔尖人才项目共同资助
文献收藏号 CSCD:6364055

参考文献 共 48 共3页

1.  Altschuler M D. Magnetic fields and the structure of the solar corona.I:Methods of calculating coronal fields. Solar Physics,1969,9(1):131-149 被引 11    
2.  Arge C N. Improved method for specifying solar wind speed near the Sun. Proceedings of the Tenth International Solar Wind Conference.679,2003:190-193 被引 1    
3.  Burlaga L F. Magnetic and thermal pressures in the solar wind. Solar Physics,1970,15(1):61-71 被引 1    
4.  Burlaga L F. Solar wind temperature and speed. Journal of Geophysical Research,1973,78(13):2028-2034 被引 1    
5.  Chat G L. The solar wind energy flux. Solar Physics,2012,279(1):197-205 被引 1    
6.  Chi Y T. Statistical study of the interplanetary coronal mass ejections from 1995to 2015. Solar Physics,2016,291(8):2419-2439 被引 3    
7.  Detman T. A hybrid heliospheric modeling system:Background solar wind. Journal of Geophysical Research:Space Physics,2006,111(A7):A07102 被引 9    
8.  Elliott H A. An improved expected temperature formula for identifying interplanetary coronal mass ejections. Journal of Geophysical Research:Space Physics,2005,110(A4):A04103 被引 3    
9.  Feng X S. A class of TVD type combined numerical scheme for MHD equations with a survey about numerical methods in solar wind simulations. Space Science Reviews,2003,107(1/2):43-53 被引 5    
10.  Feng X S. A comparative study on 3-D solar wind structure observed by Ulysses and MHD simulation. Chinese Science Bulletin,2005,50(7):672-678 被引 3    
11.  Feng X S. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. The Astrophysical Journal,2007,655(2):1110-1126 被引 17    
12.  Feng X S. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid. The Astrophysical Journal,2010,723(1):300 被引 21    
13.  Feynman J. On space weather consequences and predictions. Journal of Geophysical Research:Space Physics,2000,105(A5):10543-10564 被引 2    
14.  Gosling J T. Compressions and rarefactions in the solar wind:Vela 3. Journal of Geophysical Research,1972,77(28):5442-5454 被引 2    
15.  Gosling J T. Formation and evolution of corotating interaction regions and their three dimensional structure. Space Science Reviews,1999,89(1/2):21-52 被引 2    
16.  Gressl C. Comparative study of MHD modeling of the background solar wind. Solar Physics,2014,289(5):1783-1801 被引 6    
17.  Hayashi K. An MHD simulation model of time-dependent corotating solar wind. Journal of Geophysical Research:Space Physics,2012,117(A8):A08105 被引 4    
18.  Lopez R E. Solar wind proton temperaturevelocity relationship. Journal of Geophysical Research:Space Physics,1986,91(A2):1701-1705 被引 1    
19.  McGregor S L. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. Journal of Geophysical Research,2011,116(A3):A03101 被引 7    
20.  Odstrcil D. Modeling 3-D solar wind structure. Advances in Space Research,2003,32(4):497-506 被引 12    
引证文献 1

1 杨易 多种观测数据驱动的三维行星际太阳风MHD模拟 空间科学学报,2020,40(3):305-314
被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号