帮助 关于我们

返回检索结果

高光谱遥感地质灾害信息提取系统设计与实现
Design and development of geohazard information system based on hyperspectral remote sensing

查看参考文献20篇

叶成名 1,2   李尧 2 *   崔鹏 2   梁莉 3  
文摘 凭借图谱合一优势,高光谱遥感技术应用日益广泛,基于高光谱遥感技术的地质灾害信息提取系统研发也显得十分迫切。论文在借鉴现有地质灾害遥感监测系统基础上,结合高光谱遥感的关键技术与数据处理方法特点,设计并实现了高光谱遥感地质灾害信息提取系统。该系统选用主流操作系统Windows7与Microsoft Visual C + + 2010集成开发环境,充分利用GDAL、OpenCV等开源组件库,基于插件式开发框架进行设计与实现。系统拥有数据读取、光谱操作、图像处理、灾害识别、分析统计、制图输出等主要模块,模块之间采用插件式松散耦合方式设计,即相互独立又有流程导向,是个一体化自动化的灾害信息提取系统。系统在减灾应用示范中得到验证,可提高地质灾害解译效率与准确性,节约工程调查成本,为减灾防灾决策提供科学数据与技术支持。
其他语种文摘 With the integration of image and spectrum,Hyperspectral Remote Sensing (HRS) techniques are widely used in many fields. The development of Geological Disaster Information Extracting System (GDIES) using HRS is in urgent needed. After deeply studying of some geological disaster remote sensing monitoring systems,this paper designs and implement a geological disaster information extracting system which combined the key techniques and HRS data processing methods. Using Microsoft Windows7 computer operating system and Visual C + + 2010 integration development environment,GDIES is developed based on the Plug-in framework by taking full advantage of GDAL and OpenCV,which are open source component libraries. There are data reading,spectrum operation,image processing,disaster identification,analysis and statistics, graphics output and other main modules in GDIES. Different modules are designed with Plug-in framework technique and loosely coupled manner. Therefore,GDIES is not only independent but also process-oriented and automatic software for disaster information extraction using the different modules. Finally,GDIES is verified by one really disaster reduction case. The results indicates that GIIES can improve the efficiency and precision of HRS image interpretation,and save costs of field investigations. Besides,this system can provide scientific data and technical supports for the disaster mitigation and prevention.
来源 中国地质灾害与防治学报 ,2018,29(5):89-94 【扩展库】
DOI 10.16031/j.cnki.issn.1003-8035.2018.05.15
关键词 高光谱遥感 ; 地质灾害 ; 系统设计 ; 系统开发
地址

1. 成都理工大学, 地球探测与信息技术教育部重点实验室, 四川, 成都, 610059  

2. 中科院成都山地灾害与环境研究所, 四川, 成都, 610041  

3. 成都理工大学管理科学学院, 四川, 成都, 610059

语种 中文
文献类型 研究性论文
ISSN 1003-8035
学科 地质学
基金 四川省科技厅重点研发项目 ;  国家重点研发计划项目
文献收藏号 CSCD:6351126

参考文献 共 20 共1页

1.  张良培. 高光谱目标探测的进展与前沿问题. 武汉大学(信息科学版),2014,39(12):1387-1395 被引 16    
2.  Goetz A F H. Imaging spectrometry for remote sensing. Science,1985,228(4704):1147-1152 被引 110    
3.  Goodenough D G. Processing hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1321-1331 被引 32    
4.  Kruse F A. Comparison of airborne hyperspectral data and EO-1 hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1388-1400 被引 40    
5.  Marleen Noomen. Evaluating the feasibility of multitemporal hyperspectral remote sensing for monitoring bioremediation. International Journal of Applied Earth Observation and Geoinformation,2015,34:217-225 被引 1    
6.  Galvao L S. Discrimination of sugarcane varieties in southeastern brazil with EO-1 hyperion data. Remote Sensing of Environment,2005,94:523-534 被引 12    
7.  Fabio Castaldi. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment,2016,197:54-65 被引 12    
8.  童庆禧. 中国高光谱遥感的前沿进展. 遥感学报,2016,20(5):689-708 被引 164    
9.  Xiong W. Fast algorithms to implement N-FINDR for hyperspectral endmember extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2011,4(3):545-564 被引 9    
10.  Dobigeon N. Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery. IEEE Trans. Signal Process,2008,56(7):2684-2695 被引 10    
11.  童庆禧. 高光谱遥感:原理、技术与应用,2006:246-283 被引 6    
12.  Sato H P. Interpretation of earthquakeinduced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province,China using satellite imagery and Google Earth. Landslides,2009,6(2):153-159 被引 28    
13.  Mondini A C. Semi-automatic recognition and mapping of rainfall induced shallow landslides usingoptical satellite images. Remote Sensing of Environment,2011,115(7):1743-1757 被引 21    
14.  Fabio Dellacqua. Remote sensing and earthquake damage assessment experiences, limits,and perspectives. Proceedings of the IEEE,2012,100(10):2876-2890 被引 1    
15.  Fiorucci F. Seasonal landslide mapping and estimation of landslide mobilization rates using. Geomorphology,2011,129(1):59-70 被引 15    
16.  Ye M. A method for recognizing building materials based on hyperspectral remote sensing. Materials Research Innovations,2015,19(10):90-94 被引 1    
17.  Datt B. Preprocessing EO-1 hyperion hyperspectral data to support the application of agricultural indices. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1246-1259 被引 44    
18.  Winter E M. N-finder: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. SPIE: Conference on Imaging Spectrometry V. 3753,1999:266-275 被引 1    
19.  Heinz D C. Fully constrained least square linear spectral unmixing analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens,2001,39(3):529-545 被引 122    
20.  Shanmugam S. Review Article Spetral matching approaches in hyperspectal image processing. International Journal of Remote Sensing,2014,35(20):8217-8251 被引 3    
引证文献 1

1 付佳妮 遥感技术在青岛市城市地质调查中的应用 海洋地质前沿,2021,37(9):69-78
被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号