帮助 关于我们

返回检索结果

导电性生物炭促进Geobacter和Methanosarcina共培养体系互营产甲烷过程
Conductive Biochar Stimulates Acetate Conversion to Methane by Syntrophic Interaction between Geobacter and Methanosarcina

查看参考文献37篇

李坚 1,2,3   汤佳 3   庄莉 3   许杰龙 4 *  
文摘 近年来研究发现互营氧化产甲烷过程中存在种间直接电子传递(direct interspecies electron transfer,DIET),这种电子传递方式比传统的种间氢转移或种间甲酸转移更为高效。导电生物炭作为导电介质,可以有效促进DIET介导的互营产甲烷进程。乙酸作为有机物厌氧降解的重要中间产物,其降解过程是否存在DIET途径尚不清楚,导电生物炭对乙酸互营降解产甲烷过程的影响机制也未有研究报道。以具有DIET功能的Geobacter sulfurreducens和Methanosarcina barkeri菌株为研究对象,构建共培养体系,以乙酸为电子供体,比较添加不同导电性生物炭共培养体系的甲烷产生和微生物生长情况。结果表明: (1)导电性生物炭处理的产甲烷速率为0.015~0.017 mmol·d~(-1),显著高于对照处理的0.012 mmol·d~(-1);而不导电生物炭处理的产甲烷速率低于对照处理。说明导电性生物炭促进共培养体系中的产甲烷过程,而不具导电性的生物炭没有促进效应;(2)导电性生物炭存在时,共培养体系的甲烷产生速率(0.008 mmol·d~(-1))和产量(0.14 mmol)明显高于Methanosarcina barkeri单菌体系的产甲烷速率(0.006 mmol·d~(-1))和产甲烷量(0.09 mmol),而添加不导电生物炭的共培养体系和单菌体系的甲烷产生速率和产量无明显差异。以上结果表明,导电性生物炭能介导Geobacter sulfurreducens和Methanosarcina barkeri之间的直接电子传递,即Geobacter sulfurreducens氧化乙酸产生的电子,以导电生物炭为导电通道直接传递至Methanosarcina barkeri还原CO_2产生甲烷,从而促进乙酸互营氧化产甲烷过程。本研究结果有助于我们理解种间直接电子传递对互营产甲烷过程的贡献及影响效应,为研究甲烷产生的微生物机制提供新的研究思路。
其他语种文摘 In recent years, studies have found that direct interspecies electron transfer (DIET) is a more effective alternative to interspecies hydrogen/formate transfer that occurs in syntrophic methanogenesis. As a conductive medium, conductive biochar can effectively promote DIET-mediated syntrophic methanogensis. Acetate is an important intermediate in the methanogenic degradation of organic matter, however, the possibility of DIET involvement in acetate conversion to methane remains unknown, the mechanism of impact of conductive biochar on acetate-degrading methanogenic process has not been studied yet either. Herein, we investigated the potential of DIET to stimulate methanogenesis in a co-culture of Geobacter sulfurreducens and Methanosarcina barkeri with acetate as the only substrate. The data showed that the methane production rates from conductive biocar amended treatments were 0.015~0.017 mmol·d~(-1) which were significantly higher than those of control with methane production rates 0.008 mmol·d~(-1). The methane production rate and the cumulative amount in cocultures treated with conductive biochar were 0.008 mmol·d~(-1) and 0.14 mmol, respectively, which obviously higher than the cultures of M. barkeri without G. sulfurreducens. Results demonstrated that conductive biochar promotes methanogenesis in co-culture systems, non-conductive biochar has no promoting effect; the methane production rate and yield of the co-culture system with conductive biochar were significantly higher than that of Methanosarcina barkeri, while the co-culture system and single bacteria system of non-conductive biochar had no significant difference in methane production rate and yield. These results suggest that conductive biochar can work as a conductive channel to mediate the direct electron transfer between Geobacter sulfurreducens and Methanosarcina barkeri, in which electrons released from acetate oxidation by Geobacter sulfurreducens are transferred through conductive biochar to Methanosarcina barkeri for CO_2 reduction, thereby the process of acetate oxidation to methane production was promoted. This study will help us to understand the contribution and impact of interspecies direct electron transfer to syntrophic methane production process, and provide new research ideas for the study of the microbial mechanism of methane production.
来源 生态环境学报 ,2018,27(7):1260-1268 【核心库】
DOI 10.16258/j.cnki.1674-5906.2018.07.009
关键词 互营产甲烷 ; 乙酸降解 ; 种间直接电子传递 ; 导电性生物炭
地址

1. 中国科学院广州地球化学研究所, 广东, 广州, 510640  

2. 中国科学院大学, 北京, 100039  

3. 广东省生态环境技术研究所, 广东, 广州, 510650  

4. 厦门市环境科学研究院, 福建, 厦门, 361006

语种 中文
文献类型 研究性论文
ISSN 1674-5906
学科 环境科学基础理论
基金 国家自然科学基金项目 ;  广东省自然科学基金
文献收藏号 CSCD:6293298

参考文献 共 37 共2页

1.  Beesley L. A review of biochars’potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut,2011,159(12):3269-3282 被引 156    
2.  Bryant M P. Emended Description of Strain MST (DSM 800T), the Type Strain of Methanosarcina barkeri. International Journal of Systematic Bacteriology,1987,37(2):169-170 被引 1    
3.  Butler J E. Evolution from a respiratory ancestor to fill syntrophic and fermenta-tive niches: comparative fenomics of six Geobacteraceae species. BMC Genomics,2009,10:103 被引 1    
4.  Chen S. Carbon cloth stimulates direct interspecies electron transfer in syntrophic cocultures. Bioresour Techol,2014,173:82-86 被引 16    
5.  Chen S. Promoting interspecies electron transfer with biochar. Scientific Reports,2014,4:5019 被引 24    
6.  Coppi M V. Development of a genetic system for geobacter sulfurreducens. Applied & Environmental Microbiology,2001,67(7):3180-3187 被引 11    
7.  Cord-Ruwisch R. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol,1998,64(6):2232-2236 被引 7    
8.  Hori T. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. Isme Journal,2010,42(2):267-278 被引 31    
9.  Hori T. Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA. Appl Environ Microbiol,2007,73(1):101-109 被引 7    
10.  Kato S. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ Microbiol,2012,14(7):1646-1654 被引 57    
11.  Kato S. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Science of the United States of America,2012,109(25):10042-10046 被引 43    
12.  Liu F. Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science,2012,5(10):8982-8989 被引 28    
13.  Liu F. Magnetite compensates for the lack of a pilin-assoicated c-type cytochrome in extracellular electron exchange. Environmental Microbiology,2015,17(3):648-655 被引 18    
14.  Lovley D R. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy & Environmental Science,2011,4(12):4896-4906 被引 33    
15.  Lovley D R. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environmental Microbiology Reports,2011,3(1):27-35 被引 16    
16.  Lovley D R. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Reviews in Environmental Science and Bio/Technology,2011,10(2):101-105 被引 4    
17.  Lovley D R. Happy together: microbial communities that hook up to swap electrons. Isme Journal,2017,11(2):327-336 被引 17    
18.  Lovley D R. Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annual Review of Microbiology,2017,71(1):643-664 被引 34    
19.  Mcglynn S E. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature,2015,526:531-535 被引 37    
20.  Mochidzuki K. Electrical and physical properties of carbonized charcoals. Industrial & Engineering Chemistry Research,2003,42(21):5140-5151 被引 4    
引证文献 6

1 冯高 丁酸氧化菌群对抗生素及活性炭协同作用响应 生物技术通报,2019,35(8):64-76
被引 2

2 马佳莹 碳基材料对餐厨垃圾厌氧消化效率和微生物群落的影响研究进展 应用与环境生物学报,2020,26(3):730-738
被引 3

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号