帮助 关于我们

返回检索结果

青藏高原西北部近地表气温直减率时空分布特征
Spatio-temporal Variation of Near-surface Temperature Lapse Rates over the Northwestern Tibetan Plateau

查看参考文献36篇

孙从建 1,2   李伟 1   李新功 1,2   张子宇 1   陈若霞 1   陈伟 1  
文摘 近地表气温直减率是研究山地生态系统对气候变化响应过程中的重要参数,论文基于青藏高原西北部1951—2013年的9个标准气象站以及2012—2016年的高山自设观测站的日平均气温、最低气温、最高气温(T_(ave)、T_(min)、T_(max))数据,分析了青藏高原西北部近地表气温直减率(LRT_(ave)、LRT_(min)、LRT_(max))的时空分布特征。结果表明:1)青藏高原西北部近地表气温随高程增大有显著下降趋势。研究区两个区域的LRT_(ave)、LRT_(min)、LRT_(max)均呈现出显著的空间差异性,而基于气象站的LRT_(ave)、LRT_(min)高于高山观测站的LRT_(ave)、LRT_(min)、LRT_(max),其中LRT_(min)差异最为显著,而LRT_(max)空间差异较小。2)青藏高原西北部近地表气温直减率具有明显的季节差异,气象站的LRT_(ave)、LRT_(min)、 LRT_(max)季节变化趋势为春季高、夏季较高、冬季低,而高山观测站的LRT_(ave)、LRT_(min)、LRT_(max)季节变化趋势为夏季高、冬季低。其中气象站LRT_(max)在四季中的差异最显著,而高山观测站的LRT_(min)的季节差异最大。高山观测站的气温直减率在4—9月间具有较为稳定的值。3)青藏高原西北部LRT_(ave)、LRT_(min)在气温突变年前后具有显著的差异,LRT_(max)无显著的变化。其中,在气温突变年之后, LRT_(ave)、LRT_(min)有显著的上升趋势,表明青藏高原西北部地区的LRT_(ave)、LRT_(min)对区域气候变化的响应显著,而LRT_(max)对区域气候变化的响应不显著。研究将有效改善青藏高原西北部气温空间分布规律研究的不足,为区域气候变化研究及生态系统对气候响应等定量研究提供理论基础。
其他语种文摘 The lapse rate of near surface air temperature is an important parameter in hydrologic and climatic simulations, especially in the high mountainous areas without enough observations. Based on the long-term meteorological measurement data (1951-2013) and near surface air temperature (T_(min), T_(ave), and T_(max)) measured by self-established weather stations during 2012-2016, this study evaluates the spatial and temporal variations of near surface temperature lapse rate (βlocal) over the northwestern Tibetan Plateau. The results show that: 1) The near surface air temperature lapse rate has a spatiotemporal distribution pattern over the northwestern Tibetan Plateau and the constant environmental temperature lapse rate (0.65 ℃/ 100 m) throughout the year cannot represent the variability of the temperature-elevation relationship in complex terrain areas. The temperature has a significant downward trend as the elevation increases. LRT_(ave), LRT_(min), LRT_(max) in two regions showed different spatial variations. The LRT_(ave), LRT_(min), LRT_(max) at the meteorological stations are higher than the LRT_(ave), LRT_(min), LRT_(max) at the mountain observation stations. The LRT_(min) shows significant spatial variation, while the LRT_(max) has smaller spatial variation. 2) A significant seasonal variation can be observed in this region. At the meteorological stations, the trend is that higher values are observed in spring and summer and lower values in winter. As for the mountain observation stations, the LRT_(ave), LRT_(min), LRT_(max) are higher in summer and lower in winter. The LRT_(max) at the meteorological stations and the LRT_(min) at the mountain observation stations have significant seasonal variations. 3) The variations of βlocal for T_(max) and T_(min) in two regions exhibit similar monthly variation characteristics, that βlocal is lower in months of winter and spring and higher in other months. Monthly βlocal for T_(min) is higher than T_(ave) and T_(min) at the meteorological stations through the whole year. The highest βlocal for T_(max) and T_(min) occurs in April, while the highest βlocal for T_(ave) occurs in June. At the mountain observation stations, the highest βlocal for T_(max) occurs in October, while the highest βlocal for T_(ave) and T_(min) occurs in April. 4) A significant increasing trend of βlocal for T_(ave) and T_(min) was observed after 1990. The difference of βlocal for T_(min) before and after 1990 is more obvious. The differences of T_(max) at different elevations before and after 1990 are weak. 5) The spatial and temporal variations of βlocal over the northwestern Tibetan Plateau are linked to geographic differences and climate factors. In addition, the controlling factors for the lapse rate in two regions are different. This research will provide a theoretical basis for quantitative researches of temperature distribution characteristics and mountain ecosystem's response to climate change in mountain areas.
来源 自然资源学报 ,2018,33(7):1270-1282 【核心库】
DOI 10.31497/zrzyxb.20170669
关键词 近地表气温直减率 ; 青藏高原西北部 ; 平均气温 ; 最低气温 ; 最高气温
地址

1. 山西师范大学地理科学学院, 山西, 临汾, 041000  

2. 中国科学院新疆生态与地理研究所, 荒漠与绿洲生态国家重点实验室, 乌鲁木齐, 830011

语种 中文
文献类型 研究性论文
ISSN 1000-3037
学科 大气科学(气象学)
基金 新疆自然科学基金面上项目
文献收藏号 CSCD:6291667

参考文献 共 36 共2页

1.  Du M X. Near-surface air temperature lapse rates in Xinjiang, northwestern China. Theoretical & Applied Climatology,2018,131:1221-1234 被引 2    
2.  Running S W. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration. Canadian Journal of Forest Research,1987,17(6):472-483 被引 29    
3.  Regniere J. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology,1996,25(5):869-881 被引 7    
4.  Thornton P E. Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology,1997,190(3/4):214-251 被引 84    
5.  Marshall S J. Near-surface-temperature lapse rates on the Prince of Wales Ice field, Ellesmere Island, Canada:Implications for regional down scaling of temperature. International Journal of Climatology,2007,27(3):385-398 被引 5    
6.  Gardner A S. Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. Journal of Climate,2009,22(16):4281-4298 被引 10    
7.  Minder J R. Surface temperature lapse rates over complex terrain:Lessons from the Cascade Mountains. Journal of Geophysical Research:Atmospheres,2010,115(D14):1307-1314 被引 16    
8.  Pellicciotti F. Spatial and temporal variability of air temperature on a melting glacier:Atmospheric controls, extrapolation methods and their effect on melt modelling, Juncal Norte Glacier, Chile. Journal of Geophysical Research:Atmospheres,2011,116(D23) 被引 7    
9.  Jabot E. Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments. Hydrological Processes,2012,26(17):2618-2630 被引 2    
10.  Rolland C. Spatial and seasonal variations of air temperature lapse rates in alpine regions. Journal of Climate,2003,16(7):1032-1046 被引 24    
11.  张百平. 山体效应研究,2015 被引 17    
12.  朱连奇. 《山体效应研究》评述. 地理学报,2016,71(10):1871 被引 1    
13.  方精云. 我国气温直减率分布规律的研究. 科学通报,1992,37(9):817-820 被引 12    
14.  江净超. 中国近地表气温直减率及其季节和类型差异. 地理科学进展,2016,35(12):1538-1548 被引 13    
15.  Shen Y J. Spatial-temporal variation of near-surface temperature lapse rates over the Tianshan Mountains, Central Asia. Journal of Geophysical Research:Atmospheres,2016,121(23):14006-14017 被引 8    
16.  姚永慧. 基于MODIS数据的青藏高原气温与增温效应估算. 地理学报,2013,68(1):95-107 被引 28    
17.  姚永慧. 基于Modis地表温度的横断山区气温估算及其时空规律分析. 地理学报,2011,66(7):917-927 被引 24    
18.  Vogt J. Mapping regional air temperature fields using satellite derived surface skin temperatures. International Journal of Climatology,1997,17(14):1559-1579 被引 20    
19.  Barrett E C. Introduction to Environmental Remote Sensing,1993 被引 2    
20.  Goetz S J. Advances in satellite remote sensing of environmental variables for epidemiological applications. Advances in Parasitology,2000,47:289-307 被引 8    
引证文献 5

1 孙从建 昆仑山提孜那甫河流域2012—2016年近地表气温时空分布特征 干旱区地理,2019,42(3):459-468
被引 0 次

2 孙从建 黄土塬面保护区潜在蒸发量时空变化及其与气象、环流因子关系分析 自然资源学报,2020,35(4):857-868
被引 3

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号