帮助 关于我们

返回检索结果

差分吸收NO_2激光雷达光源的设计与实现
Design and implementation of NO_2 differential absorption lidar sources

查看参考文献20篇

刘秋武 1,2,3   陈亚峰 1,2   王杰 1,2   王晓宾 1,2   曹开法 1   黄见 1   胡顺星 1 *  
文摘 为研制一台探测距离3km、分辨率10μg /m~3的大气NO_2廓线差分吸收激光雷达,以NO_2的吸收光谱和激光雷达方程为基础,通过数值仿真分析了回波信噪比与水平和垂直方向上大气中气溶胶、NO_2含量的分布、探测距离和几何因子的关系;搭建探测大气NO_2实验系统,开展了大气NO_2浓度实验观测,获得水平及垂直高度0.4km ~ 3.0km内的NO_2浓度实时分布,探测分辨率可达4.717μg /m~3 ,系统稳定可靠。结果表明,采用两台波长为354.7nm、能量不小于100mJ的Nd∶YAG激光器分别抽运两台染料激光器的方式,并以C450为染料,可满足差分吸收探测所需的两束波长为λ_(on)( 448.10nm)和λ_(off)( 446.80nm) 、能量为8mJ的输出光束。该方法为实用化NO_2差分吸收激光雷达光源的设计及应用提供了理论依据及技术支持。
其他语种文摘 To develop an atmospheric NO_2 differential absorption lidar ( DIAL) with detection range of 3km and resolution of 10μg /m~3 ,based on NO_2 absorption spectrum and lidar equation,the relationships among echo signal-to-noise ratio ( SNR) , aerosol of the horizontal and vertical direction,NO_2 concentration,detection distance and geometric factor were analyzed and simulated. The atmospheric NO_2 experiment system was built,and the atmospheric NO_2 concentration experiment was carried out. The NO_2 concentration in horizontal and vertical height of 0.4km ~ 3.0km was obtained in real time,and the resolution was up to 4.717μg /m~3 . The system was stable and reliable. The results show that,with two Nd∶YAG lasers with wavelength of 354.7nm and laser energy not less than 100mJ to pump two dye lasers with C450 as the dye,two output light beams for differential absorption detection can be obtained with λ_(on) of 448.10nm,λ_(off) of 446.80nm,and energy of 8mJ. This method provides theoretical basis and technical support for the design and application of practical NO_2 differential absorption lidar light sources.
来源 激光技术 ,2018,42(4):433-439 【扩展库】
DOI 10.7510/jgjs.issn.1001-3806.2018.04.001
关键词 大气光学 ; 差分吸收激光雷达 ; 二氧化氮 ; 波长和能量
地址

1. 中国科学院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 合肥, 230031  

2. 中国科学技术大学, 合肥, 230026  

3. 韩山师范学院物理与电子工程学院, 潮州, 521041

语种 中文
文献类型 研究性论文
ISSN 1001-3806
学科 电子技术、通信技术
基金 国家自然科学基金委国家重大科研仪器设备研制专项 ;  国家自然科学基金资助项目
文献收藏号 CSCD:6286787

参考文献 共 20 共1页

1.  Kanaya Y. Long-term MAXDOAS network observations of NO_2 in Russia and Asia (MADRAS) during the period 2007-2012: instrumentation,elucidation of climatology, and comparisons with OMI satellite observations and global model simulations. Atmospheric Chemistry and Physics,2014,14(15):7909-7927 被引 9    
2.  Lin W H. NO_2 detection based on laser spectrum differential method. Laser Technology. (in Chinese),2014,38(6):835-838 被引 4    
3.  Tang X Y. Atmospheric environmental chemistry. 2nd ed. (in Chinese),2006:263-271 被引 1    
4.  Wu F Ch. Detection and distribution of tropospheric NO_2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy. Acta Physica Sinica. (in Chinese),2015,64(11):114211 被引 1    
5.  Schotland R M. Some observations of the vertical profile of water vapor by a laser optical radar. Proceedings of the 4th Symposium on Remote Sensing of Environment,1966:273-283 被引 1    
6.  Fredriksson K. Mobile lidar system for environmental probing. Applied Optics,1981,20(24):4181-4189 被引 10    
7.  Kolsch H J. Simultaneous NO and NO_2 DIAL measurement using BBO crystals. Applied Optics,1989,28(11):2052-2056 被引 8    
8.  Mori H. Development of a laser radar ysing LDS Dye and sum frequency generation for NO_2 measurement. Electrical Engineering in Japan,2003,144(2):26-32 被引 3    
9.  Yin Sh R. Research on return signal statistical model of differential absorption lidar. Acta Optica Sinica,2005,25(1):1-5 被引 1    
10.  Li G H. Experiment study of NO_2 concentration measurement. High Power Laser and Particle Beams. (in Chinese),2006,18(5):181-184 被引 1    
11.  Zhang Y Ch. Development of a mobile lidar system for airpollution monitoring. Acta Optica Sinica,2004,24(8):1025-1031 被引 2    
12.  Tao Z M. Estimating method of detecting minimum pollutant gas concentration by lidar. Acta Optica Sinica. (in Chinese),2004,24(5):602-604 被引 4    
13.  Hu Sh X. A new differential absorption lidar for NO_2 measurements using Raman-shifted technique. Chinese Optics Letters,2003,1(8):435-437 被引 2    
14.  Yan J X. Environment monitoring lidar. (in Chinese),2001:76 被引 1    
15.  Voigt S. The temperature and pressure dependence of the absorption cross-sections of NO_2 in the 250-800nm region measured by fourier-transform spectroscopy. Journal of Photochemistry and Photobiology Chemistry,2002,149(1/3):1-7 被引 33    
16.  Spinhirene J D. Micro pulse lidar. IEEE Transactions on Geoscience & Remote Sensing,1993,31(1):48-55 被引 51    
17.  Wang Y J. Lidar atmospheric parameter measurements-high resolution vertical survey of important atmospheric parameters in eastern China. (in Chinese),2014:182 被引 1    
18.  Browelle V. Ultraviolet DIAL measurements of O_3 profiles in regions of spatially inhomogeneous aerosols. Applied Optics,1985,24(17):2827-2836 被引 4    
19.  Schotland R M. Errors in the lidar measurement of atmospheric gases by differential absorption. Journal of Applied Meteorology,1974,13(1):71-77 被引 7    
20.  Cao N. Estimation of differential absorption lidar measurement error for NO_2 profiling in the lower troposphere. Optical Engineering,2002,41(1):218-224 被引 2    
引证文献 2

1 胡顺星 差分吸收激光雷达系统探测背景大气SO_2和NO_2 中国激光,2018,45(9):0911009-1-0911009-6
被引 8

2 林宏 大气中气溶胶颗粒对红外激光的散射特性研究 华中师范大学学报. 自然科学版,2020,54(3):398-404
被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号