帮助 关于我们

返回检索结果

泥石流浆体黏度计算中最大体积分数的确定
Determination of the Maximum Packing Fraction for Calculating Slurry Viscosity of Debris Flow

查看参考文献30篇

杨红娟 1,2   韦方强 3   胡凯衡 2  
文摘 泥石流浆体的黏度是泥石流运动模型中的重要参数。利用相对黏度-颗粒体积分数的计算方法得到浆体黏度需要最大体积分数这一关键参数。本文利用不同来源泥石流堆积物中的细颗粒部分配置浆体开展流变实验,研究最大体积分数的确定方法。首先利用Anton Paar MCR301流变仪的同心圆筒系统测量每个细颗粒土体在不同颗粒体积分数下的流变曲线,通过宾汉模型得到各样品的塑性黏度,进而计算其与同温度下清水的相对黏度。然后利用6个应用较为广泛的相对黏度-颗粒体积分数计算方法对实验数据进行拟合,对各方法拟合的最大体积分数进行比较,分析其与细颗粒土体的特征体积分数(随机疏松堆积体积分数、随机密实堆积体积分数、击实体积分数、沉积稳定体积分数)的关系。结果显示对于同一土体配置的浆体,不同计算方法拟合的最大体积分数有所不同,但是同一种方法得到的不同土体的最大体积分数与土体的击实体积分数存在显著的线性关系,据此建立了各计算方法中最大体积分数的经验计算式。此外还建立了浆体相对黏度与颗粒体积分数、击实体积分数之间的指数关系式,该式可用于估算中等浓度和高浓度浆体与清水的相对黏度。
其他语种文摘 The slurry viscosity is an important parameter for the numerical simulation of debris flows. It is usually calculated by formulas which define the relationship between relative viscosity (ηr) and particle volume fraction (φ) . However,the maximum packing fraction (φm) is pre-requisite when using these formulas. It represents the solid fraction at which the relative viscosity approaches infinity. To study the method for determining the maximum packing fraction,fine particle samples (≤1 mm) collected at nine debris-flow gullies,most of which were located in the area affected by the Wenchuan Earthquake,were used to perform rheological tests. The median grain size of the geo-materials ranged from 0. 011 to 0. 081 mm. Slurries with different solid concentrations were prepared for each type of sample. The shear stress-rotational speed curves were measured using the concentric cylinder system of an Anton Paar MCR301 rheometer,and they were further used to derive the plastic viscosity with the Bingham model. Then the relative viscosity was computed as the ratio of the plastic viscosity of the slurry to the viscosity of water measured at a same temperature. Six widely used η_r - φ formulas were finally utilized to derive φm for each sample based on the associated experimental data. Values of φ_m obtained from different formulas were examined. The relations between φm and some characteristic solid fractions of the experimental samples,including random loose packing fraction,random close packing fraction,compaction fraction,and deposition fraction,were also analyzed. It revealed that different η_r -φ formulas would give different φm values for the same geo-material. However,a linear relationship was found between φ_m and the compaction fraction for a given η_r -φ formula. Consequently,empirical relationships had been established to estimate the φ_m parameter in η_r - φ formulas employed in the present study. Moreover,an exponential relationship was found between ηr and φ/φCP . These findings are expected to be useful in estimating the plastic viscosity of mud slurries with medium to high concentrations.
来源 山地学报 ,2018,36(3):382-390 【核心库】
DOI 10.16089/j.cnki.1008-2786.000334
关键词 泥石流 ; 浆体 ; 黏度 ; 最大体积分数 ; 宾汉模型
地址

1. 中国科学院山地灾害与地表过程重点实验室, 中国科学院山地灾害与地表过程重点实验室, 成都, 610041  

2. 中国科学院、水利部成都山地灾害与环境研究所, 成都, 610041  

3. 中国科学院重庆绿色智能技术研究院, 重庆, 400714

语种 中文
文献类型 研究性论文
ISSN 1008-2786
学科 地质学;水利工程
基金 国家自然科学基金项目
文献收藏号 CSCD:6281975

参考文献 共 30 共2页

1.  舒安平. 基于能量耗损原理的泥石流分界粒径确定方法. 水利学报,2008,38(3):257-263 被引 11    
2.  Konijn B J. Experimental study of the viscosity of suspensions: effect of solid fraction,particle size and suspending liquid. Powder Technology,2014,266:61-69 被引 7    
3.  Shewan H M. Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution. Journal of Non-Newtonian Fluid Mechanics,2015,222:72-81 被引 5    
4.  Pednekar S. Bidisperse and polydisperse suspension rheology at large solid fraction. Journal of Rheology,2018,62(2):513-526 被引 2    
5.  Sengun M Z. Bimodal model of slurry viscosity with application to coal-slurries. Part 2. High shear limit behavior. Rheologica Acta,1989,28(5):394-401 被引 3    
6.  Shapiro A P. Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions. Physical Review Letters,1992,68(9):1422-1425 被引 2    
7.  Qi F. Random close packing and relative viscosity of multimodal suspensions. Rheologica Acta,2012,51(4):289-302 被引 1    
8.  Kamien R D. Why is random close packing reproducible. Physical Review Letters,2007,99(15):155501 被引 5    
9.  Ouchiyama N. Porosity of a mass of solid particles having a range of sizes. Industrial & Engineering Chemistry, Fundamentals,1981,20(1):66-71 被引 6    
10.  Lee D I. Packing of spheres and its effect on the viscosity of suspensions. Journal of Paint Technology,1970,42:579-587 被引 2    
11.  刘猛. 煤浆浓度和颗粒分布对煤浆黏度预测的影响. 燃料化学学报,2009,37(3):266-270 被引 5    
12.  Patton T C. Paint flow and pigment dispersion: a rheological approach to coating and ink technology,1979:150 被引 1    
13.  Dabak T. Shear viscosity behaviour of highly concentrated suspensions at low and high shear rates. Rheologica Acta,1986,25(5):527-533 被引 4    
14.  南京水利科学研究院. 土工试验规程SL237-1999,1999:97-104 被引 1    
15.  倪晋仁. 泥石流的结构两相流模型.I.理论. 地理学报,1998,53(1):66-76 被引 18    
16.  Marchesini F H. Rheological characterization of yield-stress materials: flow pattern and apparent wall slip. Applied Rheology,2015,25:1-10 被引 1    
17.  Coussot P. Direct determination of rheological characteristics of debris flow. Journal of Hydraulic Engineering,1998,124(8):865-868 被引 9    
18.  王裕宜. 泥石流体的流变特性与运移特征,2014:141-143 被引 1    
19.  O'brien J S. Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering,1988,114(8):877-887 被引 28    
20.  Major J J. Debris flow rheology: experimental analysis of fine-grained slurries. Water Resources Research,1992,28(3):841-857 被引 21    
引证文献 3

1 季宪军 含水率对泥石流浆体力学特性影响实验研究 山地学报,2019,37(1):70-77
被引 3

2 梁捷 固液密度比对PMMA/HDPE悬浮液粘度的影响 材料导报,2021,35(2B):04181-04185
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号