帮助 关于我们

返回检索结果

基于卷积神经网络与显微高光谱的胃癌组织分类方法研究
Gastric Carcinoma Classification Based on Convolutional Neural Network and Micro-Hyperspectral Imaging

查看参考文献19篇

杜剑 1,2   胡炳樑 1 *   张周锋 1  
文摘 为了探究高光谱技术在胃癌组织病理诊断中的应用,将高光谱成像与显微系统结合,采集胃部切片组织的高光谱图像。针对胃癌组织与胃部正常组织在410~910nm波段的光谱特性差异,提出了一种基于卷积神经网络模型的胃癌组织分类方法,对原始光谱进行S-G平滑和一阶导数等预处理,通过分析光谱数据的特点和模型的分类效率,确定了最佳的网络结构及参数。实验结果表明:该模型对胃部癌变和正常组织的分类准确率为96.53%,鉴别胃癌组织的灵敏度和特异性分别达到94.29%和97.14%;相比于浅层学习方法,卷积神经网络模型能够充分提取癌变组织的深层光谱特征,同时能有效避免过拟合现象。将深度学习理论与显微高光谱结合的方法为医学病理研究提供了新思路。
其他语种文摘 In order to explore the application of hyperspectral technology in the pathological diagnosis of gastric cancer,we combine hyperspectral imaging and microscopy to acquire hyperspectral images of gastric slices. According to the difference of spectral characteristics between gastric cancer tissue and normal gastric tissue in the wavelength of 410-910nm,we propose a classification method based on convolutional neural network(CNN).The original spectrum is preprocessed by S-G smoothing and the first order derivative.We establish the optimal network structure and parameters by analyzing the spectral data characteristics and the classification efficiency.Experimental results show that the classification accuracy of cancerous and normal gastric tissues is 96.53%,the sensitivity and specificity of distinguishing gastric carcinoma reach 94.29% and 97.14%,respectively.Compared with shallow learning methods,the CNN model can fully extract the deep spectral characteristics of cancerous tissues and effectively prevent over-fitting.The method of deep learning combined with micro-hyperspectral imaging can also provide a new idea for the medical pathology research.
来源 光学学报 ,2018,38(6):0617001-1-0617001-7 【核心库】
DOI 10.3788/AOS201838.0617001
关键词 光谱学 ; 胃癌组织分类 ; 卷积神经网络 ; 显微高光谱成像 ; 深度学习
地址

1. 中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 陕西, 西安, 710119  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0253-2239
学科 物理学
基金 国家重点研发计划 ;  国家自然科学基金 ;  中国科学院光谱成像技术重点实验室开发基金
文献收藏号 CSCD:6268513

参考文献 共 19 共1页

1.  Ferlay J. Cancer incidence and mortality worldwide:sources,methods and major patterns in GLOBOCAN 2012. International Journal of Cancer,2015,136(5):359-386 被引 1098    
2.  Vodinh T. A hyperspectral imaging system for in vivo optical diagnostics. IEEE Engineering in Medicine and Biology Magazine,2004,23(5):40-49 被引 5    
3.  Luo B. Robust autodial morphological profiles for the classification of high-resolution satellite images. IEEE Transactions on Geoscience and Remote Sensing,2013,52(2):1451-1462 被引 2    
4.  侯榜焕. 面向高光谱图像分类的空谱半监督局部判别分析. 光学学报,2017,37(7):0728002 被引 8    
5.  Suzuki Y. Mapping the spatial distribution of botanical composition and herbage mass in pastures using hyperspectral imaging. Grassland Science,2012,58(1):1-7 被引 2    
6.  候华毅. 皮肤胆固醇无创光谱检测模拟和在体实验研究. 中国激光,2016,43(9):0907001 被引 4    
7.  董安国. 基于谱聚类和稀疏表示的高光谱图像分类算法. 光学学报,2017,37(8):0828005 被引 15    
8.  Akbari H. Detection of cancer metastasis using a novel macroscopic hyperspectral method. SPIE. 8317,2012:831711 被引 1    
9.  刘洪英. 超光谱成像技术应用于神经分类的研究. 光谱学与光谱分析,2015,35(1):38-43 被引 2    
10.  Zhu S. Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images. Biomedical Optics Express,2015,6(4):1135-1145 被引 4    
11.  Akbari H. Hyperspectral imaging and quantitative analysis for prostate cancer detection. Journal of Biomedical Optics,2012,17(7):076005 被引 9    
12.  Gerstner A O. Hyperspectral imaging of mucosal surfaces in patients. Journal of Biophotonics,2012,5(3):255-262 被引 4    
13.  Liu Z. Tongue tumor detection in medical hyperspectral images. Sensors,2012,12(1):162-174 被引 8    
14.  原江伟. 基于声光可调滤波器的肺癌组织快速显微光谱成像. 中国激光,2018,45(4):0407003 被引 3    
15.  Hinton G E. Reducing the dimensionality of data with neural networks. Science,2006,313(5786):504-507 被引 1674    
16.  Lecun Y. Gradient-based learning applied to document recognition. Proceedings of the IEEE,1998,86(11):2278-2324 被引 2031    
17.  Karen S. Very deep convolutional networks for large-scale image recognition. Proceedings of ICLR,2015:1-14 被引 1    
18.  Hinton G E. Improving neural networks by preventing co-adaptation of feature detectors. Computer Science,2012,3(4):212-223 被引 168    
19.  Zuo Z. Learning contextual dependence with convolutional hierarchical recurrent neural networks. IEEE Transactions on Image Processing,2016,25(7):2983-2996 被引 1    
引证文献 10

1 张子鹏 基于谐波分析算法的干旱区绿洲土壤光谱特性研究 光学学报,2019,39(2):0228003
被引 0 次

2 卓东 基于卷积神经网络的短切毡缺陷分类 激光与光电子学进展,2019,56(10):101009
被引 0 次

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号