帮助 关于我们

返回检索结果

定量遥感升尺度转换方法研究进展
Advances in upscaling methods of quantitative remote sensing

查看参考文献103篇

郝大磊 1,2   肖青 1,2 *   闻建光 1,2   游冬琴 1   吴小丹 1,3   林兴稳 1,2   吴胜标 1,2  
文摘 尺度效应是地理科学中普遍存在的现象,制约着遥感等空间科学的发展。发展合理的尺度转换方法以促进遥感技术的全面应用迫在眉睫。本文分别从面—面升尺度转换、点—面升尺度转换两个角度对目前定量遥感领域存在的升尺度转换方法进行综述。其中,面—面升尺度转换方法按照转换原理可分为先反演后聚合、先聚合后反演两种;点—面升尺度转换方法依据定权策略可分为简单平均法、经验回归法、地统计方法、贝叶斯方法等。不同的升尺度转换方法具有各自的特点和优势,本文分别从模型构架、基本原理、特点、局限性和适用条件等方面对现有升尺度转换方法进行分析和讨论,并从离散型与连续型、统计型与物理型、普适型与针对型以及先验知识有和无4个方面总结了现有研究中存在的不足,剖析了升尺度转换研究中存在的问题与挑战,并预测了可能的发展方向。
其他语种文摘 The scale effect is a common phenomenon in geography that restricts the development of space science,such as remote sensing.Scale issues have elicited increasing attention from scientists due to the development of quantitative remote sensing.Developing a reasonable scaling method to promote the extensive application of remote sensing technology is urgent.In this study,existing upscaling methods in quantitative remote sensing are reviewed from two aspects,namely,pixel-to-pixel and point-to-pixel upscaling.The methods are analyzed and compared in terms of the construction,basic principles,characteristics,limitations,and applicable conditions of the corresponding models.Pixel-to-pixel upscaling methods can be divided into two types,namely,inversion-aggregation and aggregation-inversion,according to the conversion mechanism.Inversion-aggregation methods are classified as mathematics and physics based.Mathematics-based methods consist of classic image process approaches,empirical regression methods,and fractal-based methods.The principle of inversion-aggregation methods is explicit and clear,and the values acquired by such methods are generally considered true values.However,these methods require a pixel-by-pixel inversion process,which leads to low operational efficiency.Aggregation-inversion methods are categorized as input parameter-,model-,and output parameter-based approaches.Pixel-by-pixel retrieval is avoided in such methods.From the perspective of the power determination strategy,point-to-pixel upscaling methods can be classified as simple average,empirical regression,geostatistical,and Bayesian.Simple average methods depend on a reasonable evaluation of spatial heterogeneity and an efficient sampling strategy.Empirical regression methods build the empirical statistical relationship on the basis of a large amount of sample data.Geostatistical methods consider the spatial autocorrelation and spatial distribution characteristics of variables.Bayesian methods integrate high-spatial-resolution remote sensing data and prior knowledge to acquire an optimal estimation of land surface parameters at a low spatial resolution.Different point-to-pixel upscaling methods present different advantages and characteristics.Combining the temporal-spatial distribution characteristics of parameters,prior knowledge,and applicability of upscaling methods is necessary to select reasonable upscaling methods in practical applications.On the basis of this analysis,we summarize the problems in existing scaling research from four aspects,namely,discrete and continuous model,statistical and physical model,universal and targeted model,and use of prior knowledge or not.Several other problems,such as the definition of true value,uncertainty analysis,and scale domain and scale threshold determination,have rarely been discussed in upscaling research and require the attention of scientists.We also provide several possible development directions of upscaling methods in quantitative remote sensing.These directions provide important guidance to scaling theory research and its practical application.
来源 遥感学报 ,2018,22(3):408-423 【核心库】
DOI 10.11834/jrs.20187070
关键词 升尺度转换 ; 尺度效应 ; 尺度纠正 ; 真实性检验 ; 定量遥感
地址

1. 中国科学院遥感与数字地球研究所, 遥感科学国家重点实验室, 北京, 100101  

2. 中国科学院大学, 北京, 100049  

3. 兰州大学资源环境学院, 兰州, 730000

语种 中文
文献类型 综述型
ISSN 1007-4619
学科 测绘学
基金 国家自然科学基金
文献收藏号 CSCD:6246562

参考文献 共 103 共6页

1.  Aman A. Upscale integration of normalized difference vegetation index: the problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):326-338 被引 15    
2.  An N. Image and spectral fidelity study of hyperspectral remote sensing image scaling up based on wavelet transform. Proceedings of SPIE 9669, Remote Sensing of the Environment:19th National Symposium on Remote Sensing of China,2015:96690A 被引 1    
3.  Asli M. Comparison of approaches to spatial estimation in a bivariate context. Mathematical Geology,1995,27(5):641-658 被引 8    
4.  Atkinson P M. Spatial scale problems and geostatistical solutions: a review. The Professional Geographer,2000,52(4):607-623 被引 18    
5.  Becker F. Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote Sensing Reviews,1995,12(3/4):225-253 被引 47    
6.  Berterretche M. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment,2005,96(1):49-61 被引 14    
7.  Chen J M. Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sensing of Environment,1999,69(1):30-42 被引 32    
8.  Chen J M. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity. Biogeosciences Discussions,2013,10(3):4225-4270 被引 1    
9.  Christakos G. A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology,1990,22(7):763-777 被引 19    
10.  Christakos G. Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators?. Mathematical Geology,1998,30(4):435-462 被引 6    
11.  Christakos G. Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Transactions on Geoscience and Remote Sensing,2004,42(5):991-1008 被引 4    
12.  Christakos G. BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. Journal of Geophysical Research:Atmospheres,2001,106(D9):9717-9731 被引 2    
13.  Cohen W B. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment,2003,84(4):561-571 被引 18    
14.  Cosh M H. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. Journal of Hydrology,2006,323(1/4):168-177 被引 9    
15.  Crow W T. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Reviews of Geophysics,2012,50(2):RG2002 被引 22    
16.  Crow W T. Upscaling of field-scale soil moisture measurements using distributed land surface modeling. Advances in Water Resources,2005,28(1):1-14 被引 4    
17.  de Lannoy G J M. Upscaling of point soil moisture measurements to field averages at the OPE3 test site. Journal of Hydrology,2007,343(1/2):1-11 被引 4    
18.  Ding Y L. Comparison of spatial sampling strategies for ground sampling and validation of MODIS LAI products. International Journal of Remote Sensing,2014,35(20):7230-7244 被引 3    
19.  D'Or D. Spatial Prediction of Soil Properties, the Bayesian Maximum Entropy Approach. Louvain-la-Neuve: Universite Catholique de Louvain,2003 被引 1    
20.  El Maayar M. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sensing of Environment,2006,102(1/2):33-51 被引 7    
引证文献 15

1 王春梅 被动微波土壤水分产品真实性检验研究进展 浙江农业学报,2019,31(5):846-854
被引 0 次

2 万昌君 遥感数据时空尺度对地理要素时空变化分析的影响 遥感学报,2019,23(6):1064-1077
被引 9

显示所有15篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号