帮助 关于我们

返回检索结果

广西五圩矿田箭猪坡铅锌锑多金属矿床成矿流体特征及特富矿体形成分析
Characteristics of ore-forming fluids and formation of bonanza in Jianzhupo Pb-Zn-Sb polymetallic deposit within Wuxu ore field, Guangxi, South China

查看参考文献47篇

张健 1,2   黄文婷 1   伍静 3   梁华英 1 *   陈玲 4  
文摘 箭猪坡矿床是广西丹池成矿带南段五圩矿田中最大的Pb-Zn-Sb多金属矿床。矿床主要由早阶段特富大脉状闪锌矿-脆硫锑铅矿矿化和晚阶段脆硫锑铅矿-闪锌矿-碳酸盐-石英脉状矿化组成。本文分析了箭猪坡矿床两种不同矿化类型石英、闪锌矿中的流体包裹体特征、均一温度及盐度,探讨特富矿体形成的控制因素。两种矿化类型包裹体主要由含CO_2包裹体和水溶液包裹体组成。早阶段特富大脉状矿化流体包裹体均一温度为120~290 ℃,集中在220~290 ℃之间,盐度为3.6%~13.6%。晚阶段脉状矿化流体包裹体均一温度为150~ 350 ℃,集中在240~310 ℃之间,盐度为1.4%~12.0%。富CO_2成矿流体主要来自变质、有机质中低温热降解、有机质还原SO_4~(2-)、岩浆出溶及夕卡岩化。箭猪坡矿化产于泥盆系破碎带中,晚于华南地区变质作用;矿床成矿温度(220~310 ℃)远大于有机物热降解释放大量CO_2的温度(约150 ℃);矿床深部发育Sn矿化,表明成矿流体具还原性,不太可能含有大量SO_4~(2-);而区内非夕卡岩化岩浆热液矿床成矿热液只含有少量CO_2。因此,初步认为箭猪坡矿床富CO_2流体主要与深部夕卡岩化作用有关,成矿流体主要来源于岩浆热液。成矿流体含少量甲烷、沥青质等有机质,表明成矿过程有盆地卤水混入。早阶段特富矿体成矿流体在温度-盐度图上显示中高温中高盐度和低温低盐度流体混合特征,而晚阶段脉状矿化成矿流体温度-盐度分布较为分散,暗示晚阶段脉状矿化成矿过程主要经历了冷却降温,流体混合较弱。这表明成矿流体大规模混合是形成特富矿体的关键控制因素。依据富CO_2流体可能主要来源于深部夕卡岩化作用,初步推测五圩矿田深部有寻找夕卡岩型矿床良好前景。
其他语种文摘 The Jianzhupo deposit is the largest Pb-Zn-Sb polymetallic deposit in the Wuxu ore field, located at the southern part of the Danchi metallogenic belt, Guangxi, South China. Jianzhupo mineralization mainly occurs as extremely high-grade veins (bonanza) and jamesonite-sphalerite-carbonate-quartz (JSCQ) veins. In this study, the characteristics, homogenization temperatures, and salinities of fluid inclusions (FIs) from quartz and sphalerite in the bonanza and JSCQ veins were analyzed, and factors controlling the formation of the bonanza were discussed. Results of analysis showed CO_2 was popular in FIs from the Jianzhupo deposit, suggesting that ore-forming fluids had a high CO_2 contents. Homogenization temperatures and salinities of FIs trapped in minerals from the bonanza ranged from 120 ℃ to 290 ℃ (with a peak range of 220 ℃ to 290 ℃) and from 3.4% to 13.6%, respectively; and those for the JSCQ veins ranged from 150 ℃ to 350 ℃ (with a peak range of 240 ℃ to 310 ℃) and from 1.4% to 12.0%, respectively. The abundant CO_2 in ore-forming fluids could be derived from metamorphism, low-temperature thermal degradation of organic matter, oxidization of organic matter by SO_4~(2-), volatile exsolution of magma or skarnization. However, given that (1) Jianzhupo mineralization hosted in fractures within the Middle Devonian occured later than regional metamorphism in South China, (2) ore-forming temperatures (mainly 220 ℃ - 310 ℃) of the Jianzhupo deposit were much higher than the temperature (ca. 150 ℃) of CO_2 released during thermal degradation of organic matter, (3) tin mineralization in the Jianzhupo suggests that ore-forming fluids were reduced to such an extent that the formation of adequate amount of SO_4~(2-) was not possible, and (4) ore-forming fluids of magmatic-hydrothermal deposits unrelated to skarnization in the region contain minor amounts of CO_2, it was finally deduced that the CO_2-rich fluids of the Jianzhupo deposit, were derived from skarnization at depth and that the ore-forming fluids of the Jianzhupo deposit were mainly derived from magmatic water. In addition, the FIs were found to contain minor amounts of CH_4, asphaltene, and other organic matters, which indicates the mixing of brine during mineralization. The homogenization temperatures and salinities of FIs in the bonanza and JSCQ mineralization were found to have strong positive correlation and weak positive correlation, respectively. These results indicated that bonanza mineralization was triggered by intensive mixing between a low-temperature, low-salinity fluid and a high-mediumtemperature, high-medium-salinity fluid, whereas JSCQ mineralization was triggered by a reduced amount of mixing between different fluids with gradually decreasing temperatures. It was thus determined that large-scale mixing of different fluids was the critical factor controlling formation of the bonanza. Based on the premise that CO_2-rich fluids were likely derived from skarnization at depth, it is inferred that the deep part of the Wuxu ore field is an ore prospecting target for skarn mineralization.
来源 地球化学 ,2018,47(3):257-267 【核心库】
DOI 10.19700/j.0379-1726.2018.03.003
关键词 特富矿体 ; 流体包裹体 ; 闪锌矿 ; 流体混合 ; 箭猪坡矿床
地址

1. 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东, 广州, 510640  

2. 中国科学院大学, 北京, 100049  

3. 广西大学资源环境与材料学院, 广西, 南宁, 530004  

4. 钦州学院, 广西北部湾海洋灾害研究重点实验室, 广西, 钦州, 535011

语种 中文
文献类型 研究性论文
ISSN 0379-1726
学科 地质学
基金 国家自然科学基金面上项目 ;  科技部国家重点研究计划
文献收藏号 CSCD:6243617

参考文献 共 47 共3页

1.  Leach D L. Sediment-hosted leadzinc deposits: A global perspective. Econ Geol,2005,100:561-607 被引 95    
2.  韩润生. 滇东北富锗银铅锌多金属矿集区矿床模型. 地质学报,2012,86(2):280-294 被引 78    
3.  王登红. 广西南丹大厂超大型锡多金属矿床的成矿时代. 地质学报,2004,78(1):132-138 被引 98    
4.  Moncada D. Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita vein in the Guanajuato mining district, Mexico. Cent Eur J Geosci,2012,4(2):300-309 被引 2    
5.  Paez G N. High-grade ore shoots at the Martha epithermal vein system, Deseado Massif, Argentina: The interplay of tectonic, hydrothermal and supergene processes in ore genesis. Ore Geol Rev,2016,72:546-561 被引 3    
6.  Romberger S B. A model for bonanza gold deposits. Geosci Can,1992,19(2):63-72 被引 2    
7.  Saunders J A. Colloidal transport of gold and silica in epithermal precious-metal systems: Evidence from the Sleeper deposit, Nevada. Geology,1990,18(8):757-760 被引 7    
8.  Saunders J A. Silica and gold textures in bonanza ores of the Sleeper deposit, Humboldt County, Nevada: Evidence for colloids and implications for epithermal ore-forming processes. Econ Geol,1994,89(3):628-638 被引 6    
9.  Saunders J A. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes. Miner Deposita,2016,51(1):1-11 被引 4    
10.  Saunders J A. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Mineral Deposita,2008,43(7):715-734 被引 1    
11.  Squire R J. Controls on ore shoot locations and geometries at the Stawell gold mine, Southeastern Australia: Contributions of the volcano sedimentary, alteration, and structural architecture. Econ Geol,2008,103(5):1029-1041 被引 1    
12.  Walsh J F. Fluid inclusion geochemistry of high-grade, vein-hosted gold ore at the Pamour Mine, Porcupine Camp, Ontario. Econ Geol,1988,83(7):1347-1368 被引 5    
13.  蔡明海. 桂西北丹池成矿带控矿构造样式. 地质与勘探,2012,48(1):68-75 被引 9    
14.  徐珏. 广西丹池地区矿田构造,1988:1-97 被引 2    
15.  孙德梅. 应用重磁资料研究广西芒场-大厂成矿带的地质构造及隐伏岩体预测. 中国地质科学院矿床地质研究所文集,1994(1):120-138 被引 3    
16.  蔡建明. 广西五圩矿田多金属矿床的成矿特征及物质来源. 矿物岩石,1995,15(3):63-68 被引 10    
17.  陈毓川. 大厂锡矿地质,1993:1-361 被引 21    
18.  赵京. 广西五圩矿田成矿分带特征及其地质意义. 地质与勘探,2016,52(1):60-69 被引 2    
19.  王东明. 广西丹池成矿带锑矿成矿特征及成因探讨,2012 被引 2    
20.  王自有. 广西五圩锑矿床中含银锑黝铜矿. 矿物岩石,2000,20(2):5-7 被引 4    
引证文献 1

1 刘涛涛 广西五圩矿田箭猪坡Pb-Zn-Sb多金属矿床成因研究:来自硫同位素和闪锌矿微量元素的制约 矿物岩石地球化学通报,2020,39(3):646-662
被引 1

显示所有1篇文献

论文科学数据集

1. 湘东北横洞钴矿床白垩纪时期流体包裹体数据

2. 湖南东北部万古-黄金洞金矿区流体包裹体地球化学数据(2020)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号