帮助 关于我们

返回检索结果

高斯模激光冲击钛合金薄壁件应力场的演变机制
Evolution Mechanism of Residual Stress Field in Gaussian Laser Shocking of Titanium Alloy Thin-Wall Workpieces

查看参考文献22篇

孙博宇 1   乔红超 1 *   赵吉宾 1   陆莹 1   胡太友 1,2  
文摘 采用数值模拟方法,研究了激光冲击不同厚度钛合金零件时沿零件表面和深度方向的残余应力场分布规律,并通过动态分析,研究了冲击波在不同平面间的反射情况。结果表明,当其他参数不变时,试样的正面残余应力随厚度的增大而增大,而反面残余应力随厚度的增大先增大后减小。当试样厚度为4mm时,正面显微硬度最大值为440.2HV;当试样的厚度为2mm时,反面显微硬度最大值为416.1HV。冲击波与声阻抗接触面作用产生的拉伸波与压缩波对残余应力场的分布有显著影响。
其他语种文摘 The distribution characteristics of residual stress field along the surface and depth directions are investigated by numerical simulation when laser shocks titanium alloy parts with different thicknesses.The reflection of shock wave among different planes is investigated by dynamic analyses.The results show that,when the thickness increases but other parameters are kept constant,the front residual stress increases while the reverse residual stress increases first and then decreases.As for the front micro-hardness,it reaches the maximum at 440.2HV when the specimen thickness is 4mm,in contrast,the reverse micro-hardness reaches the maximum at 416.1HV when the specimen thickness is 2mm.The tensile and compressional waves are generated when the shock wave interacts with the acoustic impedance interface,which have obvious influences on the residual stress field distribution.
来源 中国激光 ,2018,45(5):0502005-1-0502005-8 【核心库】
DOI 10.3788/CJL201845.0502005
关键词 激光技术 ; 激光冲击强化 ; 薄壁件 ; 钛合金 ; 数值模拟 ; 残余应力场
地址

1. 中国科学院沈阳自动化研究所装备制造技术研究室, 辽宁, 沈阳, 110016  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0258-7025
学科 机械、仪表工业
基金 国家自然科学基金 ;  国家重点研发计划 ;  国家科技支撑计划项目 ;  国家基金委-辽宁省联合基金
文献收藏号 CSCD:6243557

参考文献 共 22 共2页

1.  王续跃. 圆形倾斜薄壁件的激光熔覆成形. 中国激光,2014,41(1):0103006 被引 19    
2.  刘月. 升温条件下激光冲击强化对工业纯钛拉伸性能和断口形貌的影响. 中国激光,2016,43(9):0902005 被引 4    
3.  Hua Y Q. Laser shock processing effects on isothermal oxidation resistance of GH586superalloy. Applied Surface Science,2015,330:439-444 被引 12    
4.  孙浩. 激光冲击强化对TC17钛合金残余应力及显微组织的影响. 激光与光电子学进展,2017,54(4):041405 被引 4    
5.  Hu Y X. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component. Journal of Materials Processing Technology,2018,251:197-204 被引 6    
6.  罗开玉. 双面激光同时冲击AM50镁合金板料的厚度分析. 中国激光,2014,41(1):0103003 被引 4    
7.  Ivetic G. Fatigue in laser shock peened open-hole thin aluminium specimens. Materials Science and Engineering A,2012,534:573-579 被引 11    
8.  Zhang X Q. Modeling of residual stress field induced in Ti-6Al-4Valloy plate by two sided laser shock processing. Surface & Coatings Technology,2015,280:163-173 被引 6    
9.  Lin B. Residual stresses due to foreign object damage in laser-shock peened aerofoils: Simulation and measurement. Mechanics of Materials,2015,82:78-90 被引 11    
10.  Bhamare S. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy. Surface & Coatings Technology,2013,232:464-474 被引 8    
11.  Hfaiedh N. Finite element analysis of laser shock peening of 2050-T8aluminum alloy. International Journal of Fatigue,2015,70:480-489 被引 12    
12.  Fabbro R. Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics,1990,68(2):775-784 被引 210    
13.  Kim J S. Numerical study of laser shock peening effects on alloy 600nozzles with initial residual stresses. Journal of Pressure Vessel Technology,2017,139(4):041406 被引 1    
14.  Zhang W W. Microscale laser shock peening of thin films,part 1:Experiment, modeling and simulation. Journal of Manufacturing Science and Engineering,2004,126(1):10-17 被引 12    
15.  Zhang X Q. Simulation on deforming progress and stress evolution during laser shock forming with finite element method. Journal of Materials Processing Technology,2015,220:27-35 被引 5    
16.  Hu Y X. Overlapping rate effect on laser shock processing of 1045steel by small spots with Nd:YAG pulsed laser. Surface & Coatings Technology,2008,202(8):1517-1525 被引 12    
17.  Qiao H C. Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications. Applied Surface Science,2015,351:524-530 被引 4    
18.  王宝林. 钛合金TC17力学性能及其切削加工特性研究,2013 被引 5    
19.  Ding K. Laser shock peening:Performance and process simulation,2006 被引 2    
20.  Wang Y N. Microscale laser peen forming of single crystal. Journal of Applied Physics,2008,103(6):063525 被引 2    
引证文献 2

1 陈彬 激光冲击强化对回转支承用钢42CrMo表面性能的影响 表面技术,2019,48(2):62-68
被引 3

2 杨恒基 约束条件对薄板激光冲击表面完整性的影响 激光与红外,2022,52(1):40-46
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号