帮助 关于我们

返回检索结果

合金材料超高周疲劳的机理与模型综述
A review on mechanisms and models for very-high-cycle fatigue of metallic materials

查看参考文献124篇

洪友士 1,2   孙成奇 1,2   刘小龙 1  
文摘 在循环载荷作用下,合金材料发生裂纹萌生、扩展直至断裂的周次在107以上的过程被称为超高周疲劳(very-high-cycle fatigue, VHCF).本综述将从30年前超高周疲劳的研究起源讲起,直到近年的最新进展.引言之后的内容包括:超高周疲劳研究的起源,超高周疲劳的主要特征,超高周疲劳裂纹萌生特征区和特征参量,裂纹萌生特征区的形成机理与模型,超高周疲劳性能预测模型.在叙述中,试图回答下列问题:什么是超高周疲劳?为什么要研究超高周疲劳?超高周疲劳的关键科学问题是什么?超高周疲劳的S-N曲线趋势为什么发生变化?超高周疲劳裂纹为什么萌生于材料(试样)内部?裂纹内部萌生的过程和机理是什么?上述问题有的可以给出明确的回答,有的则是现阶段的最新结果,并有待于对问题的继续探索.
其他语种文摘 The process of fatigue failure beyond 10~7 cycles for a metallic material subjected to cyclic load is called very-high-cycle fatigue (VHCF). This review will summarize the research progress of VHCF starting with its origination in early 1980s, until the cutting-edge development in recent years. After Introduction, this review contains following parts: Origination of VHCF research, Main characteristics of VHCF, Characteristic region of crack initiation and related parameters for VHCF, Formation mechanisms and models for characteristic region of crack initiation, and Prediction models of VHCF properties. The relevant descriptions attempt to answer the following questions: What is VHCF? Why VHCF should be investigated? What are the essential scientific issues for VHCF? Why the tendency of S-N curve for VHCF is changed? Why crack initiates from the interior of material (specimen) for VHCF? What are the process and the mechanism of interior crack initiation? Some of the questions will be clearly answered, but some of them be just addressed by newly results, which require further exploration.
来源 力学进展 ,2018,48(1):1-65 【核心库】
DOI 10.6052/1000-0992-17-002
关键词 超高周疲劳 ; 裂纹萌生 ; 特征尺度 ; 疲劳强度 ; 疲劳寿命 ; 合金材料
地址

1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 综述型
ISSN 1000-0992
学科 力学
基金 国家自然科学基金 ;  中国科学院战略性先导科技专项
文献收藏号 CSCD:6225133

参考文献 共 124 共7页

1.  洪友士. 合金材料超高周疲劳行为的基本特征和影响因素. 金属学报,2009,45:769-780 被引 27    
2.  钱桂安. 不同介质环境中低合金钢的高周和超高周疲劳实验研究.[博士论文],2009 被引 1    
3.  . ASTM E468-90. Annual book of ASTM standards 2006,Section 3, 03.01,2004:556-561 被引 1    
4.  Akiniwa Y. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime. International Journal of Fatigue,2006,28:1555-1565 被引 16    
5.  Asami K. Fatigue strength of various surface hardened steels. Journal of the Japan Society for Heat Treatment,1985,25:147-150 被引 2    
6.  Asami K. Fatigue strength characteristics of high-strength steel. JSME International Journal Series I-Solid Mechanics Strength of Materials,1990,33:367-374 被引 1    
7.  Atrens A. Subsurface crack initiation in high cycle fatigue in Ti6A14V and in a typical martensitic stainless steel. Scripta Metallurgica,1983,17:601-606 被引 4    
8.  Bathias C. Gigacycle Fatigue in Mechanical Practice,2005 被引 10    
9.  Borrego L P. Microstructure dependent fatigue crack growth in aged hardened aluminium alloys. International Journal of Fatigue,2004,26:1321-1331 被引 7    
10.  Chapetti M D. Ultra-long cycle fatigue of high-strength carbon steels part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science & Engineering A,2003,356:236-244 被引 24    
11.  Furuya Y. Notable size effects on very high cycle fatigue properties of high-strength steel. Materials Science & Engineering A,2011,528:5234-5240 被引 3    
12.  Furuya Y. Gigacycle fatigue properties of Ti-6Al-4V alloy under tensile mean stress. Materials Science & Engineering A,2014,598:135-140 被引 4    
13.  Grad P. Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scripta Materialia,2012,67:838-641 被引 8    
14.  Harlow D G. Crack growth based probability modeling of S-N response for high strength steel. International Journal of Fatigue,2006,28:1479-1485 被引 2    
15.  Heinz S. Analysis of fatigue properties and failure mechanisms of Ti6A14V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry. Ultrasonics,2013,53:1433-1440 被引 3    
16.  Heinz S. Crack initiation mechanisms of Ti6A14V in the very high cycle fatigue regime. International Journal of Fatigue,2016,93:301-308 被引 7    
17.  Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 5th ed,2012 被引 3    
18.  Holper B. Near threshold fatigue crack growth at positive load ratio in aluminium alloys at low and ultrasonic frequency: influences of strain rate, slip behaviour and air humidity. International Journal of Fatigue,2004,26:27-38 被引 10    
19.  Hong Y. Experiment and simulation of very-high-cycle fatigue behavior for low alloy steels. Proceedings of the 12th International Conference on Fracture, July 12-17, 2009, ICF12 CD-ROM, T26.003,2009 被引 1    
20.  Hong Y. Fatigue strength and crack initiation mechanism of very-high-cycle fatigue for low alloy steels. Metallurgical and Materials Transactions A,2012,43:2753-2762 被引 4    
引证文献 13

1 许巍 基于振动台的TA11钛合金超高频疲劳实验和验证 航空材料学报,2019,39(4):86-92
被引 5

2 吴圣川 金属材料疲劳裂纹扩展机制及模型的研究进展 固体力学学报,2019,40(6):489-538
被引 32

显示所有13篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号