帮助 关于我们

返回检索结果

水热条件下方解石-磷灰石转化机制影响因素初探
Apatite formation from calcite under hydrothermal environment: transforming mechanisms and influencing factors

查看参考文献22篇

师城 1   陆现彩 1   蔡元峰 1   何宏平 2 *  
文摘 磷灰石广泛存在于生物体和各种地质体中,其形成机制随物理化学条件变化而变化。本文采用Raman光谱、扫描电镜和X射线谱仪等技术研究了水热条件下,方解石向羟基磷灰石转变过程中矿物物相的变化,探讨了羟基磷灰石的形成机制。结果表明,在弱酸性环境下,方解石中的碳酸根离子先被溶液中的磷酸氢根离子交代,形成二水合磷酸氢钙(DCPD),随后部分DCPD经过脱水脱氢作用逐步转变为羟基磷灰石(HAP),还有部分磷酸氢钙溶解在水溶液中;但在碱性环境下,仅有少量的方解石转变为HAP。由此可知,磷酸盐流体中,羟基磷灰石替代方解石的生长是一种溶解-沉淀耦合的过程。低温条件下,酸性缓冲溶液条件首先生成DCPD,而后转变为HAP,碱性条件直接生成HAP。温度升高能加速方解石向HAP的转变,并且未发现DCPD的中间相。
其他语种文摘 Apatite widely occurs in organisms and various rocks,and its formation mechanisms change with changing physical and chemical conditions. In this study,Raman spectroscopy and field emission scanning electron microscope with energy spectrometer technology were used to study the phase transition in the replacement of calcite by hydroxyapatite in hydrothermal conditions. Formation mechanisms of hydroxyapatite were also discussed. Results show that hydrogen phosphate ion from the solution replaces carbonic acid ion of calcite first in weakly acid environment and forms dicalcium phosphate dehydrate(DCPD). Some of the DCPD become hydroxyapatite (HAP) progressively through the dehydration and dehydrogenation process; others would dissolve in aqueous solution. However,in alkaline environment,only a small fraction of calcite is replaced by HAP. Therefore,the replacement reactions from calcite to hydroxyapatite are explained by“the coupled dissolution-reprecipitation”mechanism. Under low temperature condition,acid buffer solution promotes the formation of DCPD and alkaline condition,on the other hand facilitates the formation of HAP. High temperature accelerates the replacement of calcite by HAP and no DCPD phase was observed in this condition.
来源 矿物学报 ,2018,38(1):58-63 【核心库】
DOI 10.16461/j.cnki.1000-4734.2018.007
关键词 羟基磷灰石 ; 方解石 ; 水热反应 ; 相变 ; 溶解-沉淀耦合机制
地址

1. 南京大学地球科学与工程学院, 内生金属成矿机制研究国家重点实验室, 江苏, 南京, 210046  

2. 中国科学院广州地球化学研究所, 广东, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 1000-4734
学科 地质学
基金 国家大学生创新创业训练计划
文献收藏号 CSCD:6221055

参考文献 共 22 共2页

1.  Filippelli G M. The global phosphorus cycle. Reviews in Mineralogy and Geochemistry,2002,48(1):391-425 被引 8    
2.  Kasioptas A. Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates. Geochimica et Cosmochimica Acta,2011,75(12):3486-3500 被引 1    
3.  Putnis A. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine,2002,66(5):689-708 被引 29    
4.  Putnis A. Mineral replacement reactions. Reviews in Mineralogy and Geochemistry,2009,70(1):87-124 被引 34    
5.  Roy D M. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature,1974,247(5438):220-222 被引 19    
6.  Felicio-Fernandes G. Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation. Quimica Nova,2000,23(4):441-446 被引 2    
7.  Lemos A F. Hydroxyapatite Nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society,2006,26(16):3639-3646 被引 5    
8.  Guo Y P. Fabrication and characterization of hydroxycarbonate apatite with mesoporous structure. Microporous and Mesoporous Materials,2009,118(1/3):480-488 被引 2    
9.  Guillemin G. Comparison of coral resorption and bone apposition with two natural corals of different porosities. Journal of Biomedical Materials Research,1989,23(7):765-779 被引 4    
10.  Muller-Mai C. Substitution of natural coral by cortical bone and bone marrow in the rat femur: Part II: SEM,TEM,and in situ hybridization. Journal of Materials Science: Materials in Medicine,1996,7(8):479-488 被引 3    
11.  Onuma K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Progress in Crystal Growth and Characterization of Materials,2006,52(3):223-245 被引 5    
12.  Ames L L. The genesis of carbonate apatites. Economic Geology,1959,54(5):829-841 被引 2    
13.  D'anglejan B F. Origin of marine phosphorites off Baja California,Mexico. Marine Geology,1967,5(1):15-44 被引 2    
14.  Ishikawa K. Fabrication of low crystalline B-type carbonate apatite block from low crystalline calcite block. Journal of the Ceramic Society of Japan,2010,118(1377):341-344 被引 1    
15.  Tas A C. Granules of brushite and octacalcium phosphate from marble. Journal of the American Ceramic Society,2011,94(11):3722-3726 被引 1    
16.  Kim I Y. Hydroxyapatite formation from calcium carbonate single crystal under hydrothermal condition: effects of processing temperature. Ceramics International,2016,42(1):1886-1890 被引 4    
17.  Young R A. Structures of biological minerals. Biological Mineralization and Demineralization,1982:101-141 被引 2    
18.  郭英. 水热条件下羟基磷灰石纳米晶形成机理. 中国民航大学学报,2007,25(4):26-30 被引 4    
19.  Johnsson M S A. The role of brushite and octacalcium phosphate in apatite formation. Critical Reviews in Oral Biology & Medicine,1992,3(1):61-82 被引 2    
20.  Elliott J C. Apatite structures. Advances in X-ray Analysis,Volume 45. Newton Square, International Centre for Diffraction Data. 45,2002:172-181 被引 1    
引证文献 2

1 蒋华义 材料类型对CaCO_3析晶污垢生长特性的影响机理研究 表面技术,2018,47(12):255-262
被引 3

2 彭丽娟 含铬方解石向磷灰石转化过程中铬的迁移和固定 矿物学报,2020,40(3):297-304
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号