帮助 关于我们

返回检索结果

蛋白质三级结构预测算法综述
A Survey on Algorithms for Protein Tertiary Structure Prediction

查看参考文献72篇

王超 1,2   朱建伟 1,2   张海仓 1,2   巩海娥 1,2   郑伟谋 3   卜东波 1  
文摘 了解蛋白质的三维结构对于认识蛋白质的功能有着重要意义.由于蛋白质结构测定的速度远远跟不上蛋白质序列测定的速度,因此使用计算技术依据蛋白质序列预测结构成为结构测定的有力补充.该文首先总结了蛋白质结构预测的3类基本方法,包括基于序列-序列联配的同源建模法、基于序列-结构联配的归范法以及基于最小化能量函数的从头预测法,并分析了其中的关键技术;进而总结了有代表性的蛋白质结构预测软件工具,然后通过对蛋白质结构预测CASP比赛结果的分析比较了各种方法的性能,并获得了如下结论:当待预测蛋白质与模板蛋白质序列等同度超过30%时,同源建模法能够产生高质量的预测结果,归范法中的远同源检测以及从头预测法中的能量函数设计是尚待突破的关键点;最后,该文总结分析了未来的发展趋势,并阐释了强序列信号“绑架”蛋白质构象生成的观点,即从整体来说,蛋白质序列与结构的关联关系并不显著,但其中某些特定的局部序列片段具有非常强的结构倾向性,这些强信号区域引导蛋白质的折叠过程,对这些强信号区域的认识将会有助于提升蛋白质结构预测算法的性能.
其他语种文摘 Proteins are important macromolecules that consist of one or more long chains of amino acids,and perform a great variety of biological functionalities,including catalyzing, transportation,and responses to stimuli.In natural environment,aprotein usually folds into a specific tertiary structural conformation called native structure.The functionalities of a protein are largely determined by its structural conformation,rending the understanding of protein structures fatally important.However,the experimental approaches for the determination of protein structures are commonly labor-intensive and time-consuming,and thus cannot match up the speed of protein sequencing.Therefore,it is invaluable to predict protein structures using computational approaches.In this study,we summarized the popular strategies for protein structure prediction,including homology modeling approaches based on sequence-sequence alignment,threading approaches based on sequence-structure alignment,and ab initio approaches based on optimizing energy functions.Furthermore,we listed the popular software packages for protein structure prediction as well as their performance in the CASP(Critical Assessment of protein Structure Prediction)competition.The evaluation of these approaches showed the following three observations:(1)If the sequence identity between a query protein and a certain template protein exceeds 30%,homology modeling approaches usually report accurate prediction results; (2)For threading approaches,how to improve fold recognition for remote homology proteins remains one of the challenges;and(3)For ab initio approaches,the design of an accurate energy function,together with building structural conformation with the assistance of the information of residue-residue contact information still need investigation.Finally,we summarized this study by listing our perspectives on protein structure prediction,especially on the the perspective that protein folding is an elite-driven process.Specifically,the correlation between protein sequence and its native structure is not that strong from the global point of view;however,at certain regions,local sequences carry strong signals of local structural preference.These regions might initialize the protein folding process,and speed up protein folding through significantly reducing search space of possible structural conformations.The understanding of these regions should greatly facilitate the developing of novel approaches for protein structure prediction.In summary, the accurate prediction of protein structures heavily relies on our insights into the relationship between protein sequence and structure,as well as modeling these insights into an efficient statistical models and algorithms.Protein structure is a representative problem that a linear sequence of entities forms specific complex structures under the interactions among these entities; thus,the advances in the field of protein structure prediction will contribute to solving other similar problems.
来源 计算机学报 ,2018,41(4):760-779 【核心库】
DOI 10.11897/sp.j.1016.2018.00760
关键词 蛋白质结构 ; 同源建模 ; 归范法 ; 从头预测法 ; 能量函数 ; 动态规划 ; 线性规划
地址

1. 中国科学院计算技术研究所, 北京, 100190  

2. 中国科学院大学, 北京, 100049  

3. 中国科学院理论物理研究所, 北京, 100190

语种 中文
文献类型 综述型
ISSN 0254-4164
学科 自动化技术、计算机技术
基金 国家973计划 ;  国家自然科学基金 ;  中国科学院理论物理研究所理论物理国家重点实验室开放工程项目
文献收藏号 CSCD:6214537

参考文献 共 72 共4页

1.  Branden C I. Introduction to Protein Structure,1999 被引 1    
2.  Khan M Q. Prion disease susceptibility is affected byβ-structure folding propensity and local side-chain interactions in PrP. Proceedings of the National Academy of Sciences,2010,107(46):19808-19813 被引 7    
3.  Hattne J. MicroED data collection and processing. Acta Crystallographica Section A:Foundations and Advances,2015,71(4):353-360 被引 1    
4.  Eibauer M. Structure and gating of the nuclear pore complex. Nature Communications,2015,6(6):7532 被引 8    
5.  Gold V A M. Visualizing active membrane protein complexes by electron cryotomography. Nature Communications,2014,5(5):4129 被引 1    
6.  Anfinsen C B. Kinetics of formation of native ribonuclease during oxidation of reduced polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America,1961,47(9):1309-1314 被引 32    
7.  Ho B K. Folding very short peptides using molecular dynamics. PLoS Computational Biology,2006,2(4):e27 被引 1    
8.  Pauling L. Configurations of polypeptide chains with favored orientations around single bonds:Two new pleated sheets. Proceedings of the National Academy of Sciences of the United States of America,1951,37(11):729 被引 5    
9.  Kabsch W. Dictionary of protein secondary structure:Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers,1983,22(12):2577-2637 被引 113    
10.  Heringa J. Computational methods for protein secondary structure prediction using multiple sequence alignments. Current Protein and Peptide Science,2000,1(3):273-301 被引 2    
11.  Jones D T. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology,1999,292(2):195-202 被引 87    
12.  Wang Z. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics,2011,11(19):3786-3792 被引 4    
13.  Faraggi E. SPINE X:Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. Journal of Computational Chemistry,2012,33(3):259-267 被引 3    
14.  Heffernan R. Improving prediction of secondary structure,local backbone angles,and solvent accessible surface area of proteins by iterative deep learning. Scientific Reports,2015,5(5):11476 被引 10    
15.  Wei-Mou Z. Proteins:From sequence to structure. Chinese Physics B,2014,23(7):8705 被引 1    
16.  Zheng W M. The Use of a Conformational Alphabet for Fast Alignment of Protein Structures,2008 被引 1    
17.  Henikoff S. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences,1992,89(22):10915-10919 被引 25    
18.  Wang S. Hydropathy conformational letter and its substitution matrix HP-CLESUM:An application to protein structural alignment. arXiv preprint:1001.2879,2010 被引 1    
19.  Murzin A G. SCOP:A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology,1995,247(4):536-540 被引 59    
20.  曾辉. 从蛋白质序列到结构[博士学位论文],2012 被引 1    
引证文献 5

1 王小奇 距离和疏水模型辅助的蛋白质结构预测方法 小型微型计算机系统,2019,40(12):2494-2499
被引 1

2 李章维 接触图辅助的过程重采样蛋白质构象空间优化算法 小型微型计算机系统,2020,41(3):491-496
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号