帮助 关于我们

返回检索结果

TC17钛合金激光冲击强化实验研究
Experimental Study on Laser Shock Peening of TC17 Titanium Alloy

查看参考文献13篇

张恭轩 1   吴嘉俊 2,3   高宇 1   桓恒 1   胡太友 2,3   乔红超 2   陆莹 2  
文摘 目的探索更为高效的激光冲击强化方式,提高TC17钛合金板片的疲劳寿命。方法先采用设备4个光路对TC17钛合金板片进行强化,强化试验结束后,应用LXRD-X射线应力分析仪测定其表面残余应力,再对板片进行表面粗糙度测试。选取新的板片进行应力分布测试,确定TC17钛合金板片在一阶弯曲振型下的应力水平,然后在该应力水平下对经冲击强化和未经冲击强化的板片进行疲劳对比试验。结果板片表面产生了残余压应力层,在相同激光能量下,椭圆形光斑强化区域的残余应力大约是方形光斑强化区域的1.33倍,且椭圆形区域各点残余应力数值相差更小。强化区域的表面粗糙度为0.25~0.34 mm,未强化区域的表面粗糙度为0.13~0.16 mm。疲劳试验时,未经激光冲击强化的板片均在6~11 min内发生断裂,而经激光强化后的4块板片中,1块未断裂,另外3块分别在59、381、709 min断裂。结论激光冲击强化对材料性能起到了强化作用,且椭圆形光斑的强化优于方形光斑。强化后,板片的表面粗糙度增加了1倍,疲劳寿命提高了52倍。
其他语种文摘 The work aims to explore a more efficient laser shock peening method, and improve fatigue life of TC17 titanium alloy sheet bars. Firstly, TC17 titanium alloy sheet bars were peened with four optical paths, then surface residual stress of the sheet bars was measured with LXRD-X-ray stress analyzer, and finally surface roughness test was performed to the sheet bars. New sheet bars were selected to perform stress distribution test and determine stress level of the TC17 titanium alloy sheet bars in first-order bending mode. Then, fatigue comparison test was performed to original sheet bars and shock peened ones at the stress level. A residual compressive stress layer took shape on the surface of the sheet bars. Provided with the same laser energy, residual stress of elliptic spot peened area wasabout 1.33 times that of rectangular spot peened area.Residual stress value in each point in the elliptic area differed slightly from each other. Surface roughness of peened area was 0.25~0.34 mm, and for unpeened area, 0.13~0.16 mm. In the fatigue test, the sheet bars not receiving laser impact peening fractured in 6~11 minutes. Among 4 sheet bars receiving laser impact peening, one did not fracture, and the other three fractured in 59, 381 and 709 min, respectively. Laser shock peening can enhance properties of materials, peening ofelliptic spot is superior tothat of square spot. Surface roughness of sheet bars increases by 1 times and fatigue life by 53 times after laser shock peening.
来源 表面技术 ,2018,47(3):96-100 【核心库】
DOI 10.16490/j.cnki.issn.1001-3660.2018.03.016
关键词 激光冲击强化 ; 疲劳 ; 应力 ; 表面粗糙度 ; 钛合金
地址

1. 中国航发沈阳黎明航空发动机有限责任公司, 沈阳, 110043  

2. 中国科学院沈阳自动化研究所, 沈阳, 110016  

3. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1001-3660
学科 金属学与金属工艺
文献收藏号 CSCD:6211085

参考文献 共 13 共1页

1.  《中国航空材料手册》编辑委员会. 中国航空材料手册第4卷钛合金铜合金,2002:179-187 被引 1    
2.  刘静安(译). 钛合金手册,1983:281 被引 1    
3.  吴冰. TC17钛合金电子束焊接接头的疲劳裂纹扩展规律及疲劳剩余寿命. 稀有金属材料与工程,2009,38(增刊3):170-174 被引 5    
4.  《工程材料实用手册》编辑委员会. 工程材料实用手册第4卷钛合金铜合金. (第2版),2002:2-5 被引 1    
5.  陶春虎. 航空用钛合金得失效及其预防,2013:190 被引 1    
6.  Charles S M. Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review. International Journal of Fatigue,2002,24(2):1021-1036 被引 12    
7.  李伟. 激光冲击强化技术的发展和应用. 激光与光电子学进展,2008,45(12):15-19 被引 58    
8.  Barradas S. Study of Adhesion of Protel Copper Coating of Al2017 Using the Laser Shock Adhesion Test (LASAT). Journal of Materials Science,2004,39(3):2707-2716 被引 9    
9.  Zhang Yongkang. Experimental Research of Laser Shock Strengthing AM50 Magnesium Alloy. Laser,2008,35(7):1068-1072 被引 1    
10.  Sano Y. Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening without Protective Coating. Materials Science and Engineering,2016,417(1/2):334-340 被引 35    
11.  Holmlid L. Laser Initiated Detonation in Rydberg Matter with a Fast Propagating Shock Wave, Releasing Protons with keV Kinetic Energy. Applied Physics Letters,2005,344(2/4):265-270 被引 3    
12.  Chen Gaojin. Multiscale Dislocation Dynamics Analyses of Laser Peening in Silicon Single Crystals. International Journal of Plasticity,2006,22(12):71-94 被引 1    
13.  李媛. 激光冲击TC17钛合金疲劳裂纹扩展试验. 中国表面工程,2017,30(3):40-47 被引 12    
引证文献 5

1 张年龙 钛合金表面自润滑陶瓷涂层的组织及耐磨性能研究 表面技术,2018,47(12):173-180
被引 7

2 刘学军 激光诱导等离子体声波信号实时采集分析软件系统 光电工程,2019,46(8):180534
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号