帮助 关于我们

返回检索结果

基于事件相关电位的水下机械手脑电波控制
Controlling an Underwater Manipulator via Event-Related Potentials of Brainwaves

查看参考文献32篇

俞建成   张进   李伟 *  
文摘 为了解放水下机械手操作人员的双手,本文将脑-机接口(BCI)技术应用到水下机器人作业中,通过解析脑电信号并将其映射为具体指令从而控制机械手.现有的脑电波控制机械手方法在实时性、准确性方面无法满足实际的水下作业要求,提出了基于视觉诱发模式的ERP(事件相关电位)脑电信号来控制水下机械手的策略.通过融合脑电波控制与水下机械手作业的各自特点和优化ERP视觉诱发界面,使操作人员能够快速地完成给定任务.8位被试被邀请在建立的实验平台上进行控制实验,最终得到的辨识操作人员意图平均准确率、系统信息传输率与完成任务平均控制时间分别为91.5%、27.7 bits/min与90.1 s.与同类系统相比,本文所提控制策略系统性能更好,且作业效率满足实际作业要求.
其他语种文摘 To free two hands of the underwater manipulator operator, the BCI (brain-computer interface) technology is applied to underwater operational tasks in this paper, where the manipulator follows instructions transformed from the brainwaves. As the current brainwave-based manipulator control methods can’t satisfy requirements for the actual underwater tasks in terms of real-time performance and accuracy, a control strategy is proposed for controlling the underwater manipulator via event-related potentials (ERP) of brainwaves (evoked by visual stimuli). The operator can quickly complete a given task after optimizing the visual evoked ERP interface and combining the characteristics of the brainwaves control and the underwater manipulator operation. Eight subjects are invited to conduct experiments on a self-developed experimental platform. The average accuracy of identifying an operator’s intention, the system information transfer rate and the average control time of completing the task are 91.5%, 27.7 bits/min and 90.1 s, respectively. Comparing with the similar systems, the system performance of the proposed control strategy is better, and the operational efficiency satisfies the practical operational requirements.
来源 机器人 ,2017,39(4):395-404 【核心库】
DOI 10.13973/j.cnki.robot.2017.0395
关键词 水下机械手 ; 复杂任务 ; 事件相关电位(ERP) ; 脑-机接口(BCI) ; 信息传输率(ITR)
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 自动化技术、计算机技术
基金 国家重点研发计划项目 ;  中国科学院前沿科学重点研究项目 ;  国家自然科学基金重点项目
文献收藏号 CSCD:6179667

参考文献 共 32 共2页

1.  Zhang J. Virtual platform of a manned submersible vehicle carrying an underwater manipulator. Cyber Technology in Automation, Control, and Intelligent Systems,2015:1126-1131 被引 2    
2.  Salgado-Jimenez T. Deep water ROV design for the Mexican oil industry. OCEANS,2010:6 被引 1    
3.  Posseme G. Method and system for destroying submerged objects, in particular submerged mines: USA, 5844159,1998 被引 1    
4.  晏勇. 深海ROV及其作业系统综述. 机器人,2005,27(1):82-89 被引 9    
5.  Yao J J. Development of a 7-function hydraulic underwater manipulator system. IEEE International Conference on Mechatronics and Automation,2009:1202-1206 被引 1    
6.  Jun B H. Manipulability analysis of underwater robotic arms on ROV and application to task-oriented joint configuration. Journal of Mechanical Science and Technology,2008,22(5):887-894 被引 2    
7.  Zhang Q F. Design and experiments of a deep-sea hydraulic manipulator system. OCEANS,2013:5 被引 1    
8.  Marani G. Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering,2009,36(1):15-23 被引 18    
9.  Marani G. Underwater target localization. IEEE Robotics & Automation Magazine,2010,17(1):64-70 被引 4    
10.  Palankar M. Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: Initial experiments. IEEE International Conference on Robotics and Biomimetics,2008:348-353 被引 1    
11.  Waytowich N. Robot application of a brain computer interface to Staubli TX40 robots-Early stages. World Automation Congress,2010:1-6 被引 1    
12.  Shen H. Research on SSVEP-based controlling system of multi-DOFs manipulator. Lecture Notes in Computer Science book series, vol.5553,2009:171-177 被引 1    
13.  Bakardjian H. Brain control of robotic arm using affective steady-state visual evoked potentials. Proceedings of the 5th IASTED International Conference Human-Computer Interaction,2010:264-270 被引 1    
14.  Grigorescu S M. A BCIcontrolled robotic assistant for quadriplegic people in domestic and professional life. Robotica,2012,30(3):419-431 被引 3    
15.  魏景汉. 事件相关电位原理与技术,2010 被引 16    
16.  Sutton S. Evoked potential correlates of stimulus uncertainty. Science,1965,150(3700):1187-1188 被引 44    
17.  Karakas S. The genesis of human eventrelated responses explained through the theory of oscillatory neural assemblies. Neuroscience Letters,2000,285(1):45-48 被引 1    
18.  Patel S H. Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences,2005,2(4):147-154 被引 16    
19.  Polich J. Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology,2007,118(10):2128-2148 被引 100    
20.  Hajihosseini A. Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology,2013,50(6):550-562 被引 3    
引证文献 6

1 王言鑫 基于混合视线一脑机接口与共享控制的人一机器人交互系统 机器人,2018,40(4):431-439
被引 1

2 史添玮 基于混合计算机接口的多旋翼飞行器3维空间目标搜索 机器人,2018,40(5):734-741,749
被引 1

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号