帮助 关于我们

返回检索结果

γ射线及质子辐照导致CCD光谱响应退化的机制
Mechanism of Spectrum Response Degradation in CCD's Exposed to γ-ray and Proton

查看参考文献20篇

文林 1 *   李豫东 1   郭旗 1   汪朝敏 2  
文摘 光谱响应是表征CCD性能的重要参数。为了研究辐射环境对CCD光谱响应产生影响的规律及物理机制,开展了不同粒子辐照实验,对CCD光谱响应曲线的退化形式及典型波长下CCD光响应的退化情况进行了分析。辐射效应对CCD光谱响应的影响可以分为电离总剂量效应和位移效应导致的退化,本文从这两种辐射效应出发,采用~(60)Co-γ射线及质子两种辐照条件,研究了CCD光谱响应的退化规律。针对460 nm(蓝光)和700 nm(红光)等典型CCD光响应波长,从辐射效应导致的损伤缺陷方面分析了CCD光谱响应退化的物理机制。研究发现,在~(60)Co-γ射线辐照时CCD光谱响应曲线变化是由于暗信号增加导致的,而质子辐照导致CCD对700 nm波长的光响应退化明显大于460 nm波长的光响应,且10 MeV质子导致的损伤比3 MeV质子更明显,表明位移损伤缺陷易导致CCD光谱响应退化。结果表明,电离总剂量效应主要导致CCD光谱响应整体变化,而位移效应则导致不同波长光的响应差异增大。
其他语种文摘 Spectral response is one of the important parameters of CCD. In order to study the effects and physical mechanism of spectral response of CCD being affected by radiation environmental,the different particles irradiation tests are done,also the degradation form of CCDs' spectral response and degradation of CCDs' light response on typical wavelength are investigated. The decays of spectral response in CCD exposed to radiation environment consist of total ionizing dose effects and displacement damage effects. This paper investigated the degradation law and physics mechanism of spectral response in CCD irradiated by ~(60)Co-γ and proton. In view of the typical CCD optical response wavelength of 460 nm (blue light) and 700 nm (red light),the physical mechanism of the degradation of CCD spectral response was analyzed from the radiation induced damage defects. The results suggest that the CCDs' spectral response curve change induced by ~(60)Co-gamma ray is due to the dark signal increases. The CCDs' spectral response degradation induced by proton is significantly higher at 700 nm wavelength light response than at 460 nm. The degradation is more obvious at 10 MeV proton than 3 MeV proton. So it is clearly that displacement damage defects easily lead to CCD spectral response degradation. The results indicate that the total ionizing dose effects inducing a global degradation of spectrum response,while displacement damage inducing the contrast of spectrum response on different wave length significantly.
来源 发光学报 ,2018,39(2):244-250 【核心库】
DOI 10.3788/fgxb20183902.0244
关键词 电荷耦合器件 ; 电离效应 ; 位移损伤 ; 光谱响应
地址

1. 中国科学院新疆理化技术研究所, 中国科学院特殊环境功能材料与器件重点实验室,新疆电子信息材料与器件重点实验室, 新疆, 乌鲁木齐, 830011  

2. 重庆光电技术研究所, 重庆, 400060

语种 中文
文献类型 研究性论文
ISSN 1000-7032
学科 物理学;自动化技术、计算机技术
基金 新疆维吾尔自治区青年科技创新人才培养工程 ;  中国科学院西部之光人才培养计划 ;  中国科学院西部之光人才培养计划
文献收藏号 CSCD:6176486

参考文献 共 20 共1页

1.  Grant C E. Long-term trends in radiation damage of chandra X-ray CCDs. Optics & Photonics 2005,2005:58980Q-1-58980Q-11 被引 1    
2.  Seabroke G. Modelling radiation damage to ESA's Gaia satellite CCDs. SPIE. 7021(3),2008:70211P-1-70211P-12 被引 1    
3.  Prod'Homme T. The impact of CCD radiation damage on Gaia astrometry-Ⅱ.Effect of image location errors on the astrometric solution. Monthly Notices Royal Astronom. Soc,2012,422(4):2786-2807 被引 1    
4.  Van Dyke D W. Effects of CTE degradation on cycle 18 observations with the STIS CCD. Instrument Science Report STIS 2011-02(v2),2011 被引 1    
5.  翁雪涛. 1024×1 024全帧CCD器件. 半导体光电,2011,32(4):459-461 被引 1    
6.  Hopkinson G R. Radiation effects on astrometric CCDs at low operating temperatures. IEEE Trans. Nuc. Sci,2005,52(6):2664-2671 被引 1    
7.  Srour J R. Universal damage factor for radiation-induced dark current in silicon devices. IEEE Trans. Nuc. Sci,2000,47(6):2451-2459 被引 6    
8.  Hopkins I H. Proton-induced charge transfer degradation in CCDs for near-room temperature applications. IEEE Trans. Nuc. Sci,1994,41(6):1984-1991 被引 4    
9.  Wang Z. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors. AIP Adv,2016,6(3):077108 被引 1    
10.  钟玉杰. γ辐照对1 024×1 152可见光CCD的影响研究. 半导体光电,2010,31(6):846-848 被引 2    
11.  Anderson J. An empirical pixel-based correction for imperfect CTE. I.HST's advanced camera for surveys. Public. Astronom. Soc. Pacific,2010,122(895):1035-1064 被引 1    
12.  Wang Z. Degradation of saturation output of the COTS array charge-coupled devices induced by total dose radiation damage. Nuc. Instrum. Methods Phys. Res,2014,751(6):31-35 被引 1    
13.  Hou R. Analysis of charge transfer inefficiency of CCD equipment under proton radiation. International Conference on Electronics and Optoelectronics,2011:V2-272-V2-274 被引 1    
14.  Konradi A. Radiation Environment Models and The Atmospheric Cutoff,2015:618-624 被引 1    
15.  Hall D J. Challenges in photon-starved space astronomy in a harsh radiation environment using CCDs. Optics for EUV,X-Ray,and Gamma-Ray AstronomyⅦ,2015:96020U 被引 1    
16.  Baggett S M. HST/WFC3:understanding and mitigating radiation damage effects in the CCD detectors. SPIE. 55(10),2016:99045D 被引 1    
17.  Marcelot O. Radiation effects in CCD on CMOS devices:first analysis of TID and DDD effects. IEEE Trans. Nuc. Sci,2015,62(6):2965-2970 被引 2    
18.  Verhoeve P. Optical and dark characterization of the PLATO CCD at ESA. SPIE. 9915,2016:99150Z 被引 1    
19.  Netzer R. Total ionizing dose effects on commercial electronics for cube sats in low earth orbits. Radiation Effects Data Workshop,2015:1-7 被引 1    
20.  Ahmed N. Total ionizing dose effects on quantum efficiency and dark current of cmos image sensors with deep-trench-isolation. Sens. Lett,2015,13(7):539-542 被引 1    
引证文献 2

1 王田珲 CMOS图像传感器在质子辐照下热像素的产生和变化规律 发光学报,2018,39(12):1697-1704
被引 1

2 黄港 不同能量质子辐照诱发CCD图像传感器性能退化实验与分析 光学学报,2023,43(11):1123001
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号