帮助 关于我们

返回检索结果

车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响
INFLUENCE OF MACROSCOPIC TOPOGRAPHY ORIENTATIONS OF WHEELS ON ADHESION COEFFICIENT OF HIGH SPEED WHEEL/RAIL UNDER WATER LUBRICATION

查看参考文献43篇

蒋华臻 1,2   王保安 1,2   李正阳 2   蔡宝春 2   杨兵 2   任志远 2  
文摘 轮胎和沥青都属于低弹性模量材料,即使运动速度较低,流体动压导致的水膜也足以产生润滑作用.对于列车轮轨这类高弹性模量材料,只有当运行速度达到200 km/h以上,水的润滑作用才体现出来,使轮轨黏着系数大幅降低,给高速列车运行带来重大安全隐患.增大表面粗糙度一般能够提高轮轨黏着系数,然而研究表明,在表面粗糙度基本相同的条件下,表面形貌取向对混合润滑状态下的黏着系数有显著影响.文中用统一雷诺方程模型,计算了在水润滑状态下,具有纵纹、横纹、菱形等特定形貌取向的车轮在高速运动时(最高500 km/h)对黏着系数的影响,并将计算结果与平均流量模型计算的结果和已有的实验结果进行了比较.结果表明:各种形貌下,轮轨黏着系数都随速度的增大而减小,其中菱形的黏着系数大于横纹的,而横纹的黏着系数又大于纵纹的,影响黏着系数的主要因素是固体接触压力与总压力之比.在轮轨点接触椭圆率k < 1时,接触区的侧流效应不可忽略,用平均流量模型计算会导致谬误.
其他语种文摘 Though tyre and asphalt are low elastic modulus materials, water lubrication resulting from hydrodynamic action would present even the speed is low. For high elastic modulus of materials, such as wheel and rail, water lubrication would present when the speed is over 200 km/h, causing potential unsafety for train operations. Increasing surface roughness will improve the wheel/rail adhesion coefficient. However it is shown that the topography orientation also has great effect on adhesion coefficient when the value of surface roughness is nearly the same under mixed lubrication. In this paper, a numerical analysis based on unified Reynolds equation was adopted. The behavior of three patterns of roughness orientations on wheels, i.e. longitudinal, transverse and rhombus, with high speed up to 500km/h under mixed lubrication were analyzed. The simulation results were compared with the results of the average flow model and the existing experimental results. It is concluded that the adhesion coefficients of wheel/rail decreased with speed increasing, while the adhesion coefficient of rhombus pattern is greater than that of the transverse, and transverse pattern is greater than that of the longitudinal. The adhesion coefficient is mainly depended on the ratio of asperity contact pressure to the total pressure. When the ellipticity k < 1 in wheel/rail point contact, the lateral flow effect could not be neglected, the results of average flow model will result in error.
来源 力学学报 ,2018,50(1):157-166 【核心库】
DOI 10.6052/0459-1879-17-129
关键词 弹流润滑 ; 表面形貌 ; 黏着系数 ; 轮/轨
地址

1. 中国科学院大学工程科学学院, 北京, 100049  

2. 中国科学院力学研究所, 中国科学院先进制造工艺力学重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 一般工业技术
基金 国家自然科学基金 ;  国家重点基础研究发展计划(973计划)
文献收藏号 CSCD:6175973

参考文献 共 43 共3页

1.  Ohyama T. Tribological studies on adhesion phenomena between wheel and rail at high speed. Wear,1991,144:263-275 被引 18    
2.  杨国伟. 高速列车的关键力学问题. 力学进展,2015,45:201507 被引 12    
3.  翟婉明. 高速铁路工程中若干典型力学问题. 力学进展,2010,40(3):358-374 被引 17    
4.  Ohyama T. Traction and slip at higher rolling speeds: Some experimentsunderdryfrictionwaterlubrication. Con-tact Mechanics and Wear of Rail/Wheel Systems, Proceedings of the International Symposium held at the University of British Columbia,1983:395-418 被引 1    
5.  Ohyama T. Influence of surface contamination on adhesion force between wheel and rail at higher speeds-1st report-behavior of adhesion force under the surfaces contaminated with a small amount of liquid paraffin. J Jpn Soc Lubr Eng,1989,10:111-114 被引 1    
6.  Ohyama T. Influence of surface contamination on adhesion force between wheel and rail at higher speeds-2nd Report-effects of friction coefficientsand tangentialrigidity onadhesion force. J Jpn Soc Lubr Eng,1989,10:115-120 被引 1    
7.  Ohyama T. Influence of surface contamination on adhesion force between wheel and rail at higher speeds-3rd Report-behavior of adhesion force under the formation of lubricant film. J Jpn Soc Lubr Eng,1989,10:121-124 被引 1    
8.  Zhang W H. Wheel/rail adhesion and analysis by using full scale roller rig. Wear,2002,253:82-88 被引 13    
9.  Tomberger C. Friction in wheel-rail contact: A model comprising interfacial fluids, surface roughness and temperature. Wear,2011,271(1/2):2-12 被引 6    
10.  Zhu Y. Adhesion modeling in the wheelrail contact under dry and lubricated conditions using measured 3D surfaces. Tribol Inter,2013,61:1-10 被引 7    
11.  黄平. 点、线接触真实粗糙表面的弹流润滑研究. 力学学报,1993,25(2):302-308 被引 4    
12.  Dowson D. Elasto-hydrodynamic Lubrication,1977:71 被引 1    
13.  Chen H. Numerical analysis for the influence of water film on adhesion between rail and wheel. Proc Inst Mech Engrs: Part J,1998,212:359-368 被引 4    
14.  Patir N. Average flow model for determining effects of 3dimensional roughness on partial hydrodynamic lubrication. J Lubri Technol Trans ASME,1978,100(1):12-17 被引 214    
15.  Patir N. Application of average flow model to lubrication between rough sliding surfaces. J Lubri Technol Trans ASME,1979,101(2):220-230 被引 138    
16.  Chen H. Adhesion between rail/wheel under water lubricated contact. Wear,2002,253:75-81 被引 25    
17.  Chen H. Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness. Wear,2005,258:1209-1216 被引 26    
18.  Wu B. Numerical analysis on wheel-rail adhesion under mixed contamination of oil and water with surface rough-ness. Wear,2014,314(1/2):140-147 被引 7    
19.  Wu B. Analysis of wheel and rail adhesion under wet condition by using elastic-plastic microcontact model. Lubri Sci,2015,27(4):297-312 被引 1    
20.  Wu B. Analysis on thermal effect on high-speed wheel/rail adhesion under interfacial contamination using a threedimensional model with surface roughness. Wear,2016,366:95-104 被引 3    
引证文献 2

1 王勃 压应力对压剪裂纹扩展的影响研究 力学学报,2019,51(3):845-851
被引 6

2 蒋华臻 激光毛化形貌对高速轮轨冰润滑黏着系数的影响 应用激光,2019,39(4):652-659
被引 2

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号