帮助 关于我们

返回检索结果

改性膨润土和沉水植物联合作用处理沉积物磷
Synergistic removal of sediment P by combining the modified bentonite and Vallisneria spiralis

查看参考文献45篇

刘子森 1,2   张义 1   王川 1,2   蔺庆伟 1,2   闽奋力 1,2   周巧红 1   刘碧云 1   贺锋 1   吴振斌 1  
文摘 首次将改性膨润土(modified bentonite,MB)作为原位吸附材料与沉水植物苦草(Vallisneria spiralis, V. spiralis)联合处理沉积物磷.研究结果表明,MB可以促进沉水植物V. spiralis的生长,V. spiralis可能通过根系分泌作用促进溶磷或是通过促进根际微生物群落的P代谢活性增加沉积物中的生物可利用性P含量.MB与沉水植物V. spiralis对沉积物P的联合作用效果优于MB和沉水植物V. spiralis单独作用之和.厚度5cm MB和V. spiralis联合作用对沉积物TP,IP,OP,Fe/Al-P和Ca-P的去除率可达59.8%,57.1%,67.8%,66.7%和44.7%.微生物试验结果表明,厚壁菌门Erysipelotrichaceae科的菌属PSB-M-3是联合组相比单一V. spiralis组或单一MB组微生物群落P代谢功能增强的主要贡献者.本研究还首次发现了Erysipelotrichaceae科微生物可作为沉积物中潜在的除磷菌.研究结果表明MB和沉水植物联合控制沉积物磷技术可进一步应用到富营养化湖泊沉积物控制工程.
其他语种文摘 The removal efficiency of sediment phosphorus (P) with the in-situ synergistic effect of modified bentonite (MB) granules and Vallisneria spiralis (V. spiralis) in West Lake, Hangzhou, China was investigated for the first time in the study. Results showed that MB could promote the growth of V. spiralis,and the residual P of the sediment not adsorbed on MB was changed through root oxygenation and nutrition allocation, and then enhanced the extra P adsorption on MB. The combination of MB and V spiralis exhibited a synergistic removal effect higher than the summation of MB and V. spiralis applied separately. The results of microcosm experiments showed that the combination of MB and V. spiralis enhanced the function of P metabolism by increasing the special genus that belongs to the family Erysipelotrichaceae.
来源 中国环境科学 ,2018,38(2):665-674 【核心库】
关键词 改性膨润土 ; 苦草 ; 联合作用:沉积物各形态磷 ; 杭州西湖
地址

1. 中国科学院水生生物研究所, 淡水生态和生物技术国家重点实验室, 湖北, 武汉, 430072  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1000-6923
学科 环境污染及其防治;行业污染、废物处理与综合利用
基金 国家“十二五”水专项 ;  国家自然科学基金项目 ;  中国科学院知识创新工程青年人才领域前沿项目
文献收藏号 CSCD:6174109

参考文献 共 45 共3页

1.  Schindler D W. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceeding of the National Academy of Sciences of the Unite States of America,2008,105(32):11254-11258 被引 169    
2.  Lu C W. Responses of Organic Phosphorus Fractionation to Environmental Conditions and Lake Evolution. Environmental Science & Technology,2016,50(10):5007-5016 被引 2    
3.  Liu J Y. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention. Environmental Science & Technology,2014,48(1):607-614 被引 21    
4.  刘德鸿. 太湖流域典型河网水体氮磷负荷及迁移特征. 中国环境科学,2016,36(1):125-132 被引 16    
5.  Dithmer L. Responses in sediment phosphorus and lanthanum concentrations and composition across 1 Olakes following applications of lanthanum modified bentonite. Water Research,2016,97:101-110 被引 7    
6.  吴沛沛. 涌湖北部底泥疏浚的生态效应研究. 水生态学杂质,2015,2:32-38 被引 2    
7.  Liu C. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface. Environmental Pollution,2016,211:165-172 被引 23    
8.  Pourabadehei M. Resuspension of sediment, a new approach for remediation of contaminated sediment. Environmental Pollution,2016,213:63-75 被引 6    
9.  章喆. 锆改性高岭土覆盖对底泥与上覆水之间磷迁移转化的影响. 环境科学,2016,37(4):1427-1436 被引 6    
10.  Zhang C. Active capping technology: a new environmental remediation of contaminated sediment. Environmental Science and Pollution Research,2016,23(5):4370-4386 被引 13    
11.  席银. 覆盖不同材料对湖泊沉积物磷释放影响机制. 环境化学,2017,36(3):532-541 被引 7    
12.  Wang C H. Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Critical Reviews in Environmental Science & Technology,2016,46(10):947-997 被引 7    
13.  孔明. 凹凸棒黏土覆盖对沉积物磷赋存形态的影响. 中国环境科学,2015,35(7):2192-2199 被引 6    
14.  Liu X N. Effect of water quality improvement on the remediation of the river sediment due to the addition of calcium nitrate. Science of the Total Environment,2017,575:887-894 被引 13    
15.  Liu S H. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy. Science of the Total Environment,2016,543:746-756 被引 1    
16.  Huang D L. Combination of Fenton process and biotreatment for wastewater treatment and soil remediation. Science of the Total Environment,2017,574:1599-1610 被引 3    
17.  莫家勇. 生态修复对浅水湖泊沉积物磷形态特征及湖水磷浓度的影响. 应用与环境生物学报,2016,22(2):320-325 被引 12    
18.  Zhao Y. A shallow lake remediation regime with Phragmites australis: Incorporating nutrient removal and water evapotranspiration. Water Research,2012,46(17):5635-5644 被引 10    
19.  刘喆. 沉水植物群落配置对太湖贡湖生态修复区的调水效果. 江苏农业科学,2016,44(5):480-483 被引 4    
20.  杨凤娟. 沉水植物在富营养化浅水湖泊修复中的生态机理. 安徽农业科学,2016,44(26):58-61 被引 8    
引证文献 9

1 王艳 磁性锆铁改性膨润土添加对河道底泥磷迁移与形态转化的影响 环境科学,2019,40(2):649-657
被引 3

2 黄小龙 沉水植物对湖泊沉积物氮磷内源负荷的控制及应用 生态与农村环境学报,2019,35(12):1524-1530
被引 10

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号