帮助 关于我们

返回检索结果

水淹条件下水稻土中砷的生物化学行为研究进展
Advancement in Study on Biochemical Behavior of Arsenic in Flooded Paddy Soil

查看参考文献107篇

钟松雄 1,2,3   何宏飞 4   陈志良 5 *   尹光彩 4   林亲铁 4   黄玲 5   王欣 5   刘德玲 4  
文摘 水稻土中砷的氧化还原和甲基化等生物化学过程是影响水稻砷毒性的主要作用机制;同时,水淹厌氧条件是驱动水稻土中砷的生物化学过程关键环节,且是导致水稻对砷大量吸收累积的主要原因,对以水稻为主食的人们造成健康威胁。本文综述了水稻土中砷的氧化还原和甲基化现象、砷的生物化学作用机制以及影响水稻土砷迁移转化的关键因素,并探讨了水淹厌氧条件对水稻土砷代谢微生物群落、微生物基因表达水平以及对砷归趋的影响。最后,展望了未来的研究方向,以期识别不同水管理模式下土壤微环境对水稻土中砷代谢微生物群落结构与基因表达水平的影响机制,为深入理解砷的生物化学行为和降低水稻对砷的吸收累积提供科学的理论参考。
其他语种文摘 Oxidation, reduction and methylation of arsenic in paddy soil are the key factors regulating transportation, transformation, and crop uptake of the element. Flooding is a common farming practice in rice cultivation, forming an anaerobic environment in the paddy soil, which not only affects the biochemical behavior of arsenic significantly, but also is often associated with enhanced uptake of arsenic by rice, thus further posing a health risk to those who consume rice as staple food. Studies in the past focused mainly on those behaviors of soil arsenic in flooded anaerobic paddy soil and their relevant mechanisms, but a comprehensive review of the studies is yet to be prepared. In this study, the biochemical behaviors of arsenic in paddy soil is summarized, and their relevant mechanisms and influential factors, including iron oxides, organic matter, redox potential (Eh) and pH are discussed. Besides, the paper also elaborates discussed how the anaerobic condition in the flooded paddy field during the paddy rice growing season affects those biochemical behaviors. Generally speaking, the iron and arsenic reducing microbes in the soil are mainly anaerobic microbes, e.g. Geobacter,Shewanella and Myxobacter, while the iron and arsenic oxidizing microbes are predominantly aerobic microbes. Therefore, the development of an anaerobic reducing condition in flooded paddy fields favors microbial iron and arsenic reduction, and what is more, as iron oxides are the most effective scavenger of arsenic in paddy soil, the flooded anaerobic environment also favors release of arsenic. It is noteworthy that arsenic desorbed from iron oxides is more prone to bioreduction. Studies in the past indicate that adsorption of arsenic by iron oxides like ferrihydrite, goethite and hematite, especially ferrihydrite, the most abundant amorphous iron oxide in paddy soil, retards bioreduction of arsenic. Another contributor to enhanced bioreduction and release of arsenic is organic matter, which serves as nutritional substance and electron donor for microbes in metabolism. In flooded anaerobic paddy soil, the addition of extraneous organic matter facilitates formation of a reducing environment, stimulates reductive iron dissolution, arsenic reduction and arsenic release in rate and extent. Besides, flooded anaerobic paddy soil is also favorable to arsenic methylation, which uses arsenite as potenital inorganic substrate. Although flooded anaerobic paddy soil is not good to microbial arsenic oxidation, anaerobic arsenic oxidation processes mediated by microbes harboring arxA gene in paddy soil was reported in studies in the past. In terms of genes in microbes responsible for arsenic metabolism, current researches focus mainly on the following ones: arrA, arsenic respiratory reduction gene; arsC, arsenic detoxification reduction gene; aroA, arsenic oxidation gene; arxA, anaerobic arsenic oxidation gene; and arsM,arsenic methylation gene. In the poevious studies, gene arsC was found in close relationship with arsM, which is related to the response of the microbes harboring these genes to the stress of arsenic toxicity. By studying changes in abundance, diversity and gene expression of the microbial community in flooded paddy soil, a clearer picture can then be plotted of the biochemical behavior of soil arsenic in paddy soil as affected changes in environment. At the end, the paper describes prospects of the research and holds that the researches may serve as references for prevention of arsenic contamination in paddy soil and for alleviation of uptake and accumulation of arsenic by rice.
来源 土壤学报 ,2018,55(1):1-17 【核心库】
DOI 10.11766/trxb201704250028
关键词 水稻土 ; 水淹条件 ; ; 生物化学行为 ; 氧化还原 ; 甲基化
地址

1. 中国科学院广州地球化学研究所, 广州, 510640  

2. 环境保护部华南环境科学研究所, 广州, 510655  

3. 中国科学院大学, 北京, 100049  

4. 广东工业大学环境科学与工程学院, 广州, 510006  

5. 环境保护部华南环境科学研究所, Guangzhou, 510655

语种 中文
文献类型 综述型
ISSN 0564-3929
学科 环境污染及其防治
基金 广东省科技计划项目 ;  广东省广州市科技计划项目
文献收藏号 CSCD:6151709

参考文献 共 107 共6页

1.  Martinez V D. Arsenic exposure and the induction of human cancers. Journal of Toxicology,2011(5):1-13 被引 10    
2.  Vega L. Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicology and Applied Pharmacology,2001,172:225-232 被引 23    
3.  Liu C P. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environmental Pollution,2010,158(3):820-826 被引 20    
4.  Stroud J L. The dynamics of arsenic in four paddy fields in the Bengal Delta. Environmental Pollution,2011,159(4):947-953 被引 19    
5.  Yamaguchi N. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH,and iron dissolution. Chemosphere,2011,83(7):925-932 被引 52    
6.  Weber F A. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environmental Science & Technology,2010,44(1):116-122 被引 19    
7.  Jia Y. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environmental Science & Technology,2014,48(2):1001-1007 被引 23    
8.  Bennett W W. Investigating arsenic speciation and mobilization in sediments with DGT and DET: A mesocosm evaluation of oxic-anoxic transitions. Environmental Science & Technology,2012,46(7):3981-3989 被引 20    
9.  Amaral D C. A new approach to sampling intact Fe plaque reveals Siinduced changes in Fe mineral composition and shoot as in rice. Environmental Science & Technology,2017,51(1):38-45 被引 8    
10.  Hu M. The diversity and abundance of As (III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports,2015,5:13611 被引 4    
11.  Zhang S Y. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science & Technology,2015,49(7):4138-4146 被引 16    
12.  Huang J H. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environmental Science & Technology,2011,45(18):7701-7709 被引 13    
13.  Xiao K Q. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environmental Pollution,2015,211:1-8 被引 1    
14.  Das S. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Science of the Total Environment,2015,542:642-652 被引 13    
15.  Jia Y. Microbial arsenic methylation in soil and rice rhizosphere. Environmental Science & Technology,2013,47(7):3141-3148 被引 22    
16.  Kumari N. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes: A comprehensive review. Chemosphere,2016,163:400-412 被引 4    
17.  朱超. 短期淹水培养对水稻土中地杆菌和厌氧粘细菌丰度的影响. 生态学报,2011,31(15):4251-4260 被引 9    
18.  陈倩. 微生物砷还原机制的研究进展. 生态毒理学报,2011,6(3):225-233 被引 4    
19.  Zhang J. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environmental Science & Technology,2015,49(10):5956-5964 被引 19    
20.  Drewniak L. Arsenic-transforming microbes and their role in biomining processes. Environmental Science and Pollution Research,2013,20:7728-7739 被引 4    
引证文献 14

1 王欣 厌氧条件水稻土铁对砷释放的影响 环境科学,2018,39(6):2911-2918
被引 5

2 朱濛 土壤—水环境中二苯砷酸污染及其修复研究进展 土壤学报,2019,56(2):276-287
被引 0 次

显示所有14篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号