帮助 关于我们

返回检索结果

超级电容器能量密度的提升策略
Strategies to Enhance Energy Density for Supercapacitors

查看参考文献146篇

文摘 超级电容器具有优良的脉冲充放电性能和快速充放电性能,同时循环寿命长、工作温度范围宽、安全无污染,但能量密度较低.本文对超级电容器的工作原理、发展状况、缺陷所在和改进方法进行了简要介绍,以作者课题组在高比能超级电容器方面的研究工作为主线,结合近几年的文献报道,重点阐述了超级电容器能量密度的提升策略.主要围绕以下3个方面开展了工作:1)通过将电极材料尺寸纳米化来提高传统电极材料的比容量或开发其他高比容量的电极材料;2)发展具有高电压窗口的离子液体电解液,或利用不同材料在不同电位区间的电容特性构筑不对称电容器,从而提高超级电容器的电压窗口;3)将超级电容器和锂离子电池进行“内部交叉”构筑兼具高能量密度和高功率密度的锂离子混合电容器.最后,对超级电容器的发展进行了展望.
其他语种文摘 The biggest advantage of supercapacitor lies in not only the excellent pulse and fast charging-dis charging perfor mance, but also the characteristics of long cycle life and wide operating temperature window with no pollution. However, the energy density of supercapacitor is low. In this paper, the working principle, the development status, defects and improvement method of supercapacitors are introduced. Based on the research workes of the supercapacitors with high energy density in our group, combined with the literature reports in recent years, the strategies to promote the energy density of supercarpacitors will be focused. The strategies for the enhancement of energy density include: 1) to increase the specific capacitance of the electrode by reducing the existing materials to nano sizes or to develop new materials with high capacity; 2) to increase the voltage window of the supercapacitor by developing ionic liquid electrolyte with high voltage window or to adopt asymmetric supercapacitors in which one electrode is pseudocapacitive, while the other utilizes double layer capacitance; 3) to build lithium ion hybrid supercapacitors with both high energy density and high power density by “internal cross” the supercapacitor and lithium ion battery. Finally, the prospects in the future development of supercapacitors will be provided.
来源 电化学 ,2017,23(5):507-532 【扩展库】
DOI 10.13208/j.electrochem.170348
关键词 超级电容器 ; 不对称电容器 ; 锂离子混合电容器 ; 能量密度 ; 功率密度
地址

中国科学院兰州化学物理研究所清洁能源化学与材料实验室, 兰州, 730000

语种 中文
文献类型 研究性论文
ISSN 1006-3471
学科 化学;电工技术
基金 国家自然科学基金项目 ;  青岛市自主创新计划基金项目 ;  西部博士基金项目资助
文献收藏号 CSCD:6130290

参考文献 共 146 共8页

1.  Simon P. Materials for electrochemical capacitors. Nature Materials,2008,7(11):845-854 被引 670    
2.  Xu B. What is the choice for supercapacitors: graphene or graphene oxide?. Energy & Environmental Science,2011,4(8):2826-2830 被引 30    
3.  Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications,1999 被引 67    
4.  Conway B E. Transition from supercapacitor to battery behavior in electrochemical energy storage. Journal of The Electrochemical Society,1991,138(6):1539-1548 被引 235    
5.  Camara O R. Surface electrochemical properties of Ti/(RuO_2 + ZrO_2) electrodes. Electrochimica Acta,1996,41(3):419-422 被引 17    
6.  Yan J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials,2014,4(4):1300816 被引 93    
7.  Wang D W. Electrochemical interfacial capacitance in multilayer grapheme sheets: Dependence on number of stacking layers. Electrochemistry Communications,2009,11(9):1729-1732 被引 9    
8.  Liu Y X. Preparation and properties of pith carbon supercapacitor. Journal of Central South University of Technology,2007,14(5):601-606 被引 1    
9.  Yan J. Carbon nanotube/MnO_2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources,2009,194(2):1202-1207 被引 26    
10.  Simon P. Where do batteries end and supercapacitors begin?. Science,2014,43:1210-1211 被引 217    
11.  Fan Z J. Asymmetric supercapacitors based on graphene/MnO_2 and activated carbon nanofiber electrodes with high power and energy density. Advanced Functional Materials,2011,21(12):2366-2375 被引 31    
12.  Wang R T. Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods. Scientific Reports,2014,4:3712 被引 2    
13.  Shang P. 2D thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitor. Advanced Functional Materials,2016,26(43):7766-7774 被引 7    
14.  Chen Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon,2011,49(2):573-580 被引 38    
15.  Liu C G. Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters,2010,10(12):4863-4868 被引 47    
16.  Sudhan N. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and nonaqueous electrolytes. Energy & Fuels,2017,31(1):977-985 被引 13    
17.  Yuan C Z. Unusual electrochemical behavior of Ru-Cr binary oxide-based aqueous symmetric supercapacitors in KOH solution. Electrochimica Acta,2013:654-658 被引 2    
18.  Zhang X. High-performance supercapacitors based on novel carbons derived from Sterculia lychnophora. RSC Advances,2015,5(41):32159-32167 被引 3    
19.  Chen J S. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Applied Materials &Interfaces,2017,9(1):496-504 被引 11    
20.  Cai Y J. Facile synthesis of threedimensional heteroatom-doped and hierarchical egg-boxlike carbons derived from moringa oleifera branches for high-performance supercapacitors. ACS Applied Materials & Interfaces,2016,8(48):33060-33071 被引 3    
引证文献 7

1 邵雯柯 WO_3/碳布柔性非对称超级电容器的组装及性能研究 电化学,2018,24(4):351-358
被引 0 次

2 杨波 自支撑柔性氮掺杂碳织物电极的制备与性能研究 电化学,2018,24(4):359-366
被引 0 次

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号