帮助 关于我们

返回检索结果

东北冻土区MODIS地表温度估算
Estimation of land surface temperature from MODIS in Northeast China

查看参考文献25篇

文摘 地表温度作为重要的地表参数是驱动土壤热状态的主要因子,对冻土分布和活动层厚度变化的研究具有重要意义。常规方式获取地表温度数据往往来自气象站点监测,范围小且不连续。NASA官网提供的MOD11A1地表温度产品可以提供大范围地表温度数据,但在冬季由于对云与雪的混淆导致大量的数据缺失,影响该产品在东北冻土区的使用。根据对东北冻土区植被、裸土、水体、积雪等常见下垫面状况的遥感分类结果,利用劈窗算法反演2006年四幅少云或无云的MODIS1B卫星影像,并分别以气象站实测数据和MODIS温度产品进行验证和对比分析。结果表明:该方法得到地表温度结果与气象站点实测数据误差较小,平均绝对误差仅为1.24 ℃。且可根据分类情况较好的得到积雪区域地表温度的空间分布状况,与地表温度产品的一致性较高,弥补地表温度产品因为云和积雪的混淆所导致的数据缺失,得到较为完整的地表温度空间分布数据。
其他语种文摘 Land surface temperature (LST) is an important parameter driving dynamics of biogeophysical processes on Earth surface. It has significant impacts on the distribution of permafrost and the change of the active layer depth. Conventional acquisition of LST data usually comes from weather station monitoring in a small and discrete scope. NASA's MOD11 A1 surface temperature product can provide a wide range of surface temperature data. In winter, however, the confusion of clouds and snow often leads to a large amount of data missing in the MOD11 A1 products in the permafrost region. In this paper, an improved splitwindow algorithm was selected to re-build the LST products in Northeast China, one of the major permafrost regions in China. Within the common land covers extracted from remote sensing classification results, such as vegetation, bare soil, water and snow. We extracted LST in each cover type from four cloud-free MODIS 1B satellite images in 2006. Both our results and the original MOD11 A1 products were statistically compared with ground measurements at weather stations. The average difference between our results and measurements at meteorological stations was small, reaching a room-mean-square error (RMSE) of 1.24 ℃. In comparison with the original MOD11 A1 products, our results took advantage of land covers and revealed better distributions of land surface temperature in snow area, and had a high consistency with the surface temperature products. This study provides a good approach to filling in the gaps of current land surface temperature products due to confusion caused by the cloud and snow.
来源 地理研究 ,2017,36(11):2251-2260 【核心库】
DOI 10.11821/dlyj201711017
关键词 东北地区 ; 冻土 ; MODIS ; 劈窗算法 ; 地表温度 ; 弥补数据
地址

哈尔滨师范大学, 黑龙江省普通高等学校地理环境遥感监测重点实验室, 哈尔滨, 150025

语种 中文
文献类型 研究性论文
ISSN 1000-0585
学科 大气科学(气象学)
基金 国家自然科学基金项目
文献收藏号 CSCD:6119245

参考文献 共 25 共2页

1.  张文杰. 气候变化下的祁连山地区近40年多年冻土分布变化模拟. 地理研究,2014,33(7):1275-1284 被引 17    
2.  Stocker T F. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Science,2013,129(1):83-103 被引 3    
3.  孙晓新. 多年冻土退化对湿地甲烷排放的影响研究进展. 生态学报,2011,31(18):5379-5386 被引 14    
4.  Schuur E A G. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bio Science,2008,58(8):701-714 被引 31    
5.  赵拥华. 青藏高原多年冻土区沼泽草甸土壤CH_4产生速率研究. 冰川冻土,2011,33(5):999-1005 被引 7    
6.  李新. 青藏高原气温分布的空间插值方法比较. 高原气象,2003,22(6):565-573 被引 90    
7.  Shiklomanov N I. Comparison of model-produced active layer fields: Results for northern Alaska. Journal of Geophysical Research: Earth Surface,2007,112(F2):195-225 被引 1    
8.  姚永慧. 青藏高原气温空间分布规律及其生态意义. 地理研究,2015,34(11):2084-2094 被引 26    
9.  黄培培. 基于Wavelet-ANFIS和MODIS地表温度产品的青藏高原0cm土壤温度估算方法. 冰川冻土,2013,35(1):74-83 被引 6    
10.  Jimenez-Munoz. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research Atmospheres,2003,108(D22):2015-2023 被引 1    
11.  Qin Z. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data. Journal of Geophysical Research Atmospheres,2001,106(D19):22655-22670 被引 45    
12.  覃志豪. 农业旱灾监测中的地表温度遥感反演方法--以MODIS数据为例. 自然灾害学报,2005,14(4):64-71 被引 96    
13.  Wan Z. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geosciences and Remote Sensing,1996,34(4):892-905 被引 92    
14.  Becker F. Towards a local split window method over land surfaces. International Journal of Remote Sensing,1990,11(3):369-393 被引 100    
15.  Sobrino J. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing of Environment,1991,38(1):19-34 被引 51    
16.  Coll C. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. Journal of Geophysical Research:Atmospheres,1997,1021(D14):16697-16714 被引 17    
17.  毛克彪. 用MODIS影像和劈窗算法反演山东半岛的地表温度. 中国矿业大学学报,2005,34(1):46-50 被引 16    
18.  Changin R I. 针对Terra/MODIS数据的改进分裂窗地表温度反演算法. 遥感学报,2013,17(4):830-840 被引 2    
19.  饶胜. 基于MODIS的珠江三角洲地区区域热岛的分布特征. 地理研究,2010,29(1):127-136 被引 17    
20.  魏智. 气候变化条件下东北地区多年冻土变化预测. 中国科学: 地球科学,2011,41(1):74-84 被引 24    
引证文献 4

1 刘世博 东北冻土区积雪深度时空变化遥感分析 冰川冻土,2018,40(2):261-269
被引 8

2 孙从建 昆仑山提孜那甫河流域2012—2016年近地表气温时空分布特征 干旱区地理,2019,42(3):459-468
被引 0 次

显示所有4篇文献

论文科学数据集

1. 青藏高原多年冻土地温与热稳定型分布图(2005-2015)

2. Permafrost, active layer and meteorological data from a relict permafrost site at Mahan Mountain, Northeast of Qinghai-Tibet Plateau (2010–2020) Version 2.0

3. 青藏高原多年冻土综合监测数据集(2002-2018)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号