帮助 关于我们

返回检索结果

中国典型观赏植物花期模型建立及过去花期变化模拟
Development of phenological models for simulating past flowering phenology of typical ornamental plants in China

查看参考文献44篇

文摘 建立花期物候模型可实现观赏植物花期的精确预报,为“樱花节"、“桃花节”等时令旅游活动的开展提供重要依据。本研究选择花期观赏价值高、分布范围广泛的四种典型观赏植物进行研究,包括桃(Amygdalus persica) 、杏(Armeniaca vulgaris)、紫荆(Cercis chinensis)和紫丁香(Syringa oblata)。利用这些植物在中国42个站点的始花期和末花期观测资料及对应的气象资料,建立并检验了可模拟不同站点和年份始花期和末花期的时空物候模型,并利用该模型重建了1962-2013年四种植物的始花期、末花期和花期长度序列,分析了其时空变化特征。结果表明:①时空物候模型能够较准确地模拟大区域和长时间的花期变化,对始花期、末花期和花期长度模拟的均方根误差多在4~6d之间;②模拟得到的花期物候存在一定的地理分布规律,其中随纬度的变化最为显著。纬度每升高1°,始花期和末花期推迟1.23~4.46d,花期长度缩短0.07~1.47d;③过去50年,所有植物平均始花期、末花期均显著提前,提前趋势在(0.95~1.61)d/10a之间。紫丁香始花期与末花期的提前趋势空间差异较小,而其他三种植物的花期提前趋势在分布区北部明显强于南部;④花期长度在过去50年间变化较弱,除紫丁香表现出较强的延长趋势(0.20d/10a)外,其他三种植物的花期长度变化趋势在(-0.01~0.07)d/10a之间,且具有很强的空间异质性。这些研究结果为典型观赏植物花期物候模拟及对气候变化的响应评估提供了科学依据。
其他语种文摘 Developing flowering phenological models is conducive to the accurate simulation of flowering periods of ornamental plants and could provide basis for seasonal flowering tourism events. We investigated four widespread ornamental plants with high aesthetic value, namely, Amygdalus persica, Armeniaca vulgaris, Cercis chinensis and Syringa oblate. Using the first flowering date (FFD) and end of flowering date (EFD) data of these species and corresponding meteorological data at 42 sites, we developed and validated the spatiotemporal model of FFD and EFD and reconstructed data series of FFD, EFD and flowering duration (FD)of the four species over their distribution area from 1962 to 2013. At last, we analyzed spatiotemporal patterns of mean phenophases and phenological changes. The results showed that the spatiotemporal model was able to simulate the flowering phenology accurately on large spatial and temporal scales with root-mean- square-error of about 4 - 6 days. The simulated mean FFD, EFD and FD followed certain geographical gradients. Latitude was the major factor influencing flowering phenology. The FFD and EFD were delayed by 1.23 - 4.46 days and the FD was extended by 0.07-1.47 days per degree increase of latitude. Over the past 50 years, the mean FFD and EFD of all species became earlier with a rate of 0.95 - 1.61 days decade The advance of S. oblate FFD and EFD exhibited no obvious spatial pattern, while the changes of FFD and EFD for the other three species showed a noticeable spatial variation with clearer advance in the north than in the south. The FD of S. oblate extended by 0.20 days decade~(-1),while the other three species showed very weak trends of-0.01 - 0.07 days decade~(-1). The changes of FD showed strong spatial heterogeneity. These results provided a scientific basis for simulating flowering phenology of typical ornamental plants and assessing their phenological responses to climate change.
来源 资源科学 ,2017,39(11):2116-2129 【核心库】
DOI 10.18402/resci.2017.11.10
关键词 花期物候 ; 典型观赏植物 ; 时空变化 ; 物候模型 ; 中国
地址

中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京, 100101

语种 中文
文献类型 研究性论文
ISSN 1007-7588
学科 园艺
基金 国家自然科学基金项目 ;  国家自然科学基金委国家重大科研仪器研制项目
文献收藏号 CSCD:6112912

参考文献 共 44 共3页

1.  Lieth H. Phenology and Seasonality Modelling,1974 被引 2    
2.  葛全胜. 物候学研究进展及中国现代物候学面临的挑战. 中国科学院院刊,2010,25(3):310-316 被引 48    
3.  Rosenzweig C. Assessment of Observed Changes and Responses in Natural and Managed Systems. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007 被引 2    
4.  Bolmgren K. One man, 73 years,and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates. International Journal ofBiometeorology,2013,57(3):367-375 被引 5    
5.  Gonsamo A. Citizen science: linking the recent rapid advances of plant flowering in Canada with climate variability. Scientific Reports,2013,3(2239):1-5 被引 2    
6.  Ge Q. Phenological response to climate change in China: a meta- analysis. Global Change Biology,2015,21(1):265-274 被引 24    
7.  Szabo B. Flowering phenological changes in relation to climate change in Hungary. International Journal ofBiometeorology,2016,60(9):1347-1356 被引 7    
8.  Dai J. The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years. Journal of Geographical Sciences,2013,23(4):641-652 被引 4    
9.  Menzel A. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south- eastern Germany based on repeated digital photographs. Frontiers in Plant Science,2015 被引 1    
10.  Delucia E H. Climate change: resetting plant-insect interactions. Plant Physiology,2012,160(4):1677-1685 被引 10    
11.  Burkle L A. Plantpollinator interactions over 120 years: loss of species, co-occurrence, and function. Science,2013,339(6127):1611-1615 被引 27    
12.  Chuine I. Why does phenology drive species distribution?. Philosophical Transactions of the Royal Society B: Biological Sciences,2010,365(1555):3149-3160 被引 25    
13.  刘普幸. 敦煌绿洲1955年至2010年胡杨年生长季对气候变化的响应. 资源科学,2012,34(3):566-571 被引 3    
14.  张洪芬. 甘肃黄土高原春季气温变化对物候的影响. 资源科学,2007,29(6):10-15 被引 6    
15.  Richardson A D. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology,2013,169(3):156-173 被引 115    
16.  Chuine I. Phenology is a major determinant of tree species range. Ecology Letters,2001,4(5):500-510 被引 20    
17.  马丽. 近20年气候变暖对北京时令旅游的影响——以北京市植物园桃花节为例. 地球科学进展,2006,21(3):313-319 被引 13    
18.  刘俊. 气候变化对成都桃花观赏旅游的影响与人类适应行为. 地理研究,2016,35(3):504-512 被引 9    
19.  王焕炯. 1952~2007年中国白蜡树春季物候时空变化分析. 中国科学:地球科学,2012,42(5):701-705 被引 13    
20.  Morin X. Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology,2009,15(4):961-975 被引 13    
引证文献 8

1 刘俊 基于微博大数据的2010~2018年中国桃花观赏日期时空格局研究 地理科学,2019,39(9):1446-1454
被引 4

2 王焕炯 气候波动对西安39种木本植物展叶始期及其积温需求的影响 植物生态学报,2019,43(10):877-888
被引 4

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号