帮助 关于我们

返回检索结果

100年来东亚和北非干旱半干旱区边界层高度的变化特征研究
Boundary Layer Height's Variation Characteristics Research of Arid and Semiarid Areas over East Asia and North Africa in Recent 100 Years

查看参考文献43篇

文摘 利用欧洲中心再分析资料ERA-20C、 ERA-Interim和ERA40对19002015年东亚、北非干旱半干旱区边界层高度的年代际变化特征进行了研究。结果表明:(1)19002015年,东亚、北非干旱半干旱区边界层高度均值分别为755 m和834 m,东亚表现为显著的上升趋势,气候倾向率为2.0 m·(10a)~(-1),年代际震荡周期约为20年,北非表现为下降趋势,气候倾向率为-0.6 m·(10a)~(-1),年代际震荡周期约为40年。1964年和1940年分别为东亚、北非的显著转折年, 1964年之后东亚边界层高度有明显抬升, 1940年之后北非边界层高度震荡幅度明显增大。(2)东亚干旱半干旱区上升趋势最为明显的区域位于东部,气候倾向率为10.7~12.4 m·(10a)~(-1),其次位于中部,气候倾向率为3.8 m·(10a)~(-1);上升较缓慢的区域位于北部,气候倾向率为0.4~1.8 m·(10a)~(-1);塔克拉玛干沙漠呈下降趋势,气候倾向率为-1.2 m·(10a)~(-1)。同时,在年代际波动中,东亚边界层高度在20世纪6070年代呈现出剧烈的震荡也主要与中东部边界层高度的变化相关。(3)北非干旱半干旱区中北部表现为显著下降趋势,气候倾向率为-5.1~-1.4 m·(10a)~(-1);南部表现为上升趋势,气候倾向率为0.8~2.5 m·(10a)~(-1)。然而,在年代际波动中,北非边界层高度在20世纪40年代之后震荡的加剧与南部边界层高度的变化密切相关。
其他语种文摘 Based on ERA-20C, ERA-Interim and ERA40, the ECMWF's reanalysis data, the interdecadal variation characteristics of the boundary-layer height of arid and semiarid areas over East Asia and North Africa spanning from 1900 to 2015 was analysed. The results showed that: (1) From 1900 to 2015, the average boundary layer of Arid and Semiarid Areas of East Asia and North Africa were 755 m and 834 m, respectively. It presented significant upward trend over East Asia with the climate tendency rate of 2.0 m·(10a)~(-1) and the decadal oscillation cycle of 20 years, and it presented downward trend over North Africa with the climate tendency rate of -0.6 m·(10a)~(-1) and the decadal oscillation cycle of 40 years. The year 1964 and 1940 were the significant turning point of East Asia and North Africa, respectively. After 1964, the boundary layer height of East Asia had a apparent rise and the boundary layer height's oscillation amplitude of North Africa increased obviously after 1940. (2) In arid and semiarid areas over East Asia, the most obvious upward trend region was at the east with the climate tendency rate of 10.7~12.4 m·(10a)~(-1), followed by central section, with the climate tendency rate of 3.8 m·(10a)~(-1), and the slowly upward trend region was at the north, with the climate tendency rate of 0.4~1.8 m·(10a)~(-1), the Taklamakan Desert showed downward trend with the climate tendency rate of -1.2 m·(10a)~(-1). Meanwhile, in the decadal fluctuations, the severe concussion presented in the sixties and seventies of East Asia boundary layer height was mainly associated with the change of central and east regions. (3) In arid and semiarid areas over North Africa, the central and north regions showed significant downward trend with the climate tendency rate of -5.1~-1.48 m·(10a)~(-1), and the south region showed upward trend with the climate tendency rate of 0.8~2.5 m·(10a)~(-1). However, in the decadal fluctuations, the intensified concussion after the forties of North Africa boundary layer height was mainly associated with the change of south region.
来源 高原气象 ,2017,36(5):1304-1314 【核心库】
DOI 10.7522/j.issn.1000-0534.2016.00107
关键词 干旱半干旱区 ; 边界层高度 ; 年代际特征 ; 波文比 ; 差异
地址

兰州大学大气科学学院, 半干旱气候变化教育部重点实验室, 兰州, 730000

语种 中文
文献类型 研究性论文
ISSN 1000-0534
学科 大气科学(气象学)
基金 国家重大科学研究计划项目 ;  中国气象局兰州干旱气象研究所干旱气象科学研究基金 ;  国家自然科学基金项目 ;  兰州大学中央高校基本科研业务费资助
文献收藏号 CSCD:6100540

参考文献 共 43 共3页

1.  Arya S P S. Parameterizing the height of the stable atmospheric boundary layer. J Appl Meteor,1981,20(10):1192-1202 被引 2    
2.  Bachour D. Boundary layer height measurements over Doha using Lidar. Energy Procedia,2014,57:1086-1091 被引 2    
3.  Bachtiar V S. A combined model for improving estimation of atmospheric boundary layer height. Atmos Environ,2014,98:461-473 被引 2    
4.  Compton J C. Determination of planetary boundary layer height on short spatial and temporal scales:A demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements. J Atmos Ocean Technol,2013,30(7):1566-1575 被引 6    
5.  Coulter R L. A comparison of three methods for measuring mixing-layer height. J Appl Meteor,1979,18(11):1495-1499 被引 6    
6.  Couvreux F. Nature of the mesoscale boundary layer height and water vapor variability observed 14 June 2002 during the IHOP_2002 campaign. Mon Wea Rev,2009,137(1):414-432 被引 1    
7.  Feng X. Amethod for deriving the boundary layer mixing height from MODIS atmospheric profile data. Atmos,2015,6(9):1346-1361 被引 1    
8.  He Q S. Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms. Atmos Environ,2006,40(6):1064-1077 被引 10    
9.  Ma L M. Parametrization of planetary boundary-layer height with helicity and verification with tropical cyclone prediction. Bound-Lay Meteor,2016,160:569-593 被引 7    
10.  McGrath-Spangler E L. The impact of a boundary layer height formulation on the GEOS-5 model climate. J Geophys Res:Atmos,2016,121(7):3263-3275 被引 2    
11.  Molod A. Estimating planetary boundary layer heights from NOAA profiler network wind profiler data. J Atmos Ocean Technol,2015,32(9):1545-1561 被引 6    
12.  Leventidou E. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece. Atmos Environ,2013,74:360-366 被引 7    
13.  Pal S. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration:An assessment of the impact of the urban heat island intensity. Atmos Environ,2012,63:261-275 被引 4    
14.  Patil M N. Planetary boundary layer height over the Indian subcontinent during extreme monsoon years. J Atmos Solar-Terrestrial Phys,2013,92:94-99 被引 3    
15.  Randel W J. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res,2000,105(D12):15509-15523 被引 18    
16.  Saeed U. Synergetic use of LiDAR and microwave radiometer observations for boundary-layer height detection. Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International IEEE,2015:3945-3948 被引 1    
17.  Sausen R. Use of changes in tropopause height to detect human influences on climate. Meteorologische Zeitschrift,2003,12(3):131-136 被引 11    
18.  Sawyer V. Detection, variations andintercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos Environ,2013,79:518-528 被引 9    
19.  Schmid P. A method for estimating planetary boundary layer heights and its application over the ARM Southern Great Plains Site. J Atmos Ocean Technol,2012,29(3):316-322 被引 2    
20.  Seidel D J. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis. J Geophys Res:Atmos,2010,115:D16113 被引 18    
引证文献 7

1 王倩茹 基于CERA-20C资料青藏高原边界层高度日变化气候特征分析 高原气象,2018,37(6):1486-1498
被引 6

2 徐潇然 东亚、北非干旱半干旱区边界层高度的特征研究 高原气象,2019,38(5):1038-1047
被引 2

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号