帮助 关于我们

返回检索结果

福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究
Alteration and mineralization of Xinan Cu-Mo ore deposit in Zijinshan orefield, Fujian Province, and application of short wavelength infra-red technology (SWIR) to exploration

查看参考文献51篇

许超 1   陈华勇 2 *   Noel White 3   祁进平 4   张乐骏 3   张爽 1   段甘 1  
文摘 西南铜钼矿段位于中国著名的福建上杭县紫金山矿田内,是该矿田最新发现的另一个典型的斑岩型矿床。该矿床形成于白垩纪,矿化(浸染状和细脉浸染状)与成矿同期花岗闪长斑岩密切相关。围岩蚀变由深到浅分别为青磐岩化带、绢英岩化带、高级泥化-泥化蚀变带和氧化带。蚀变矿化期次可划分为:(早期)绢英岩化期、斑岩矿化期、浅成低温热液叠加期、成矿后期脉和表生期。其中,斑岩矿化期又可分为钾硅酸盐化阶段、青磐岩化阶段和(晚期)绢英岩化阶段;浅成低温热液叠加期主要为泥化-高级泥化蚀变。对比研究发现,西南矿段具有与典型斑岩矿床相似的矿化蚀变特征,但缺失钾化带且矿化规模小,成矿斑岩以岩枝状(非岩株状)水平侵位,产生非对称蚀变分带,据此推测西南矿段深部可能存在真正的成矿斑岩岩株和大储量及高品位的矿化中心。通过短波红外光谱(SWIR)研究发现,从矿化中心到外围,伊利石结晶度值(IC)和伊利石2200 nm吸收峰位值(Pos2200)均有明显的从高值到低值的变化趋势。此外,研究发现高IC值(> 2.1)和高Pos2200值(> 2203 nm)可作为紫金山地区勘查该类矿床的找矿标志。本研究可以为紫金山地区斑岩矿床的成矿规律认识和找矿勘查提供科学依据。
其他语种文摘 The Xinan Cu-Mo deposit is a newly-discovered Cretaceous porphyry deposit located in the Zijinshan orefield, Shanghang County, Fujian Province. The Cu-Mo mineralization mainly occur in dissemination and veinlet-dissemination forms, associated with the granodiorite porphyry. From bottom upward, the Xinan deposit generally exhibits propylitic, phyllic, (advanced-) argillic alteration and supergene oxidation. Five stages of hypogene alteration-mineralization were recognized in the Xinan deposit: the early phyllic alteration; porphyry mineralization alteration, consisting of potassic, propylitic and (late) phyllic alteration; overlapping epithermal alteration, which includes (advanced-) argillic alteration; late veined alteration; and supergene alteration. A comparison indicates that the Xinan deposit shows similar mineralization and alteration features to typical porphyry deposits, but it lacks potassic alteration zone and the mineralization is at small scale in the deposit. The ore-bearing granodiorite porphyry intruded flatly as an apophysis (not a stock) into the deposit. It is thus inferred that the real ore-bearing porphyry stock and potential porphyry mineralization (with large reserves and high grades) probably occur in the depth of the Xinan ore district. SWIR research on the Xinan deposit reveals that the illite crystallinity (IC) and the position of illite 2200 nm absorption peak (Pos2200) both show strong gradients from high values to low values from the mineralized center to the distal barren area. Meanwhile, the SWIR anomalies (IC values > 2.1 and Pos2200 value > 2203 nm) can be used as the indicators of the mineralized porphyry deposits in the Zijinshan orefield. The results obtained by the authors provide scientific basis for further understanding of the metallogenic patterns of porphyry deposits and future exploration of mineral resources in the Zijinshan orefield.
来源 矿床地质 ,2017,36(5):1013-1038 【核心库】
DOI 10.16111/j.0258-7106.2017.05.001
关键词 地质学 ; 蚀变分带 ; 蚀变矿化期次 ; 短波红外光谱 ; 伊利石结晶度 ; 西南铜钼矿段 ; 紫金山矿田
地址

1. 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东, 广州, 510640  

2. 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室;;广东省矿物物理与材料研究开发重点实验室;;矿床地球化学国家重点实验室, 广东, 广州, 510640  

3. Centre of Excellence in Ore Deposits (CODES),University of Tasmania, Australia, Hobart  

4. 紫金矿业集团股份有限公司, 福建, 上杭, 364200

语种 中文
文献类型 研究性论文
ISSN 0258-7106
学科 地质学
基金 中国科学院“百人计划" 项目 ;  中国科学院创新交叉合作团队项目 ;  矿床地球化学国家重点实验室开放课题
文献收藏号 CSCD:6094653

参考文献 共 51 共3页

1.  Blackwell J L. Characteristics and origins of breccias in a volcanichosted alkalic epithermal gold deposit,Ladolam,Lihir Island,Papua New Guinea (dissertation for Ph. D degree),2010 被引 1    
2.  Cannell J. Geology, mineralization,alteration,and structural evolution of the El Teniente porphyry Cu-Mo deposit. Econ. Geol,2005,100:979-1003 被引 22    
3.  Chang Z S. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district,Luzon, Philippines. Econ. Geol,2011,106(8):1365-1398 被引 57    
4.  Chang Z S. Evaluation of inter-instrument variations among Short Wavelength Infrared (SWIR) devices. Econ. Geol,2012,107(7):1479-1488 被引 10    
5.  Chen J. Hydrothermal alteration, mineralization and breccias at the Zijinshan high sulfidation Cu-Au deposit,Fujian Province,China. Society for Geology Applied to Mineral Deposits Conference,2015:267-270 被引 1    
6.  Chen Y J. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews,2007,31(1/4):139-169 被引 168    
7.  Cooke D R. Giant porphyry deposits: Characteristics,distribution,and tectonic controls. Econ. Geol,2005,100:801-818 被引 250    
8.  Cooke D R. New advances in detecting the distal geochemical footprints of porphyry systems: Epidote mineral chemistry as a tool for vectoring and fertility assessments,18. Economic Geology Special Publication,2014:1-27 被引 1    
9.  Duke E F. Near infrared spectra of muscovite,Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology,1994,22(7):621-624 被引 27    
10.  Garwin S. The geologic setting of intrusion-related hydrothermal systems near the Batu Hijau porphyry copper-gold deposit,Sumbawa, Indonesia. Society of Economic Geologist Special Publication,9,2002:333-366 被引 1    
11.  Jiang S H. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo- Ag ore system,SW Fujian Province,China: Constraints from the geochronology and geochemistry of the igneous rocks. Ore Geology Reviews,2013,53:287-305 被引 43    
12.  Jin Z D. Ore-forming fluid constraints on illite crystallinity (IC) at Dexing porphyry copper deposit, Jiangxi Province. Science in China Series D: Earth Sciences,2001,44(2):177-184 被引 6    
13.  Laakso K. Application of airborne,laboratory,and field hyperspectral methods to mineral exploration in the Canadian arctic: Recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake deposit area,Nunavut,Canada. Econ. Geol,2015,110(4):925-941 被引 7    
14.  Lanier G. General geology of the Bingham mine,Bingham canyon,Utah. Econ. Geol,1978,73(7):1228-1241 被引 5    
15.  Li B. Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust-mantle interaction and lithospheric extension. Journal of Asian Earth Sciences,2014,93:253-274 被引 13    
16.  Mcintosh S. The future of base metals exploration,in Looking to the future: What's next?. AMIRA International,8th Biennial exploration Managers'Conference,Yarra Valley,Victoria,Proceedings Volume,2010 被引 1    
17.  Ossandon G. Geology of the Chuquicamata mine: A progress report. Econ. Geol,2001,96(2):249-270 被引 9    
18.  Post J L. The near-infrared combination band frequencies of dioctahedral smectites,micas and illites. Clays and Clay Minerals,1993,41:639-639 被引 15    
19.  Sillitoe R H. Porphyry copper system. Econ. Geol,2010,105:3-41 被引 504    
20.  Sillitoe R H. Geological criteria for porphyry copper exploration. Acta Geologica Sinica,2014,88(Supp):597-598 被引 1    
引证文献 21

1 张世涛 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例 矿床地质,2017,36(6):1263-1288
被引 18

2 陈寿波 新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究 地球科学,2018,43(9):2911-2928
被引 8

显示所有21篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号