帮助 关于我们

返回检索结果

基于横向二次射流的水下推力矢量方法
Underwater thrust vectoring method based on cross second flow

查看参考文献16篇

文摘 提出一种基于横向二次射流的水下推力矢量技术,通过二次射流的横向速度场诱导主流发生偏转,建立了推力矢量偏角与流速偏角的数学关系,证明了通过主流偏转实现推力矢量偏转的有效性。通过数值计算方法分析了不同二次射流深度、不同二次射流/主流体积比及不同二次射流/主流速度比条件下主流偏转角度变化。结果显示:随着二次射流深度的增加,主流受到壁面阻碍作用增强,因而偏转角度减小。随着二次射流/主流体积比的减小,出口负压区所占比例减小,主流偏转角度增加,且当体积比减小到一定值后,负压影响可以忽略,主流不再随体积比而变化。主流偏转角度随速度比增加而增加,且在速度比一定的条件下,速度数值的变化对主流偏转没有影响。设计了一种主流为圆形射流的水下矢量推进器,对其数值分析结果揭示:当位于射流中剖面同侧的二次射流全部作动时,主流可以取得最大的偏转角度,且主流的偏转方向可以通过使不同的二次射流组合处于作动状态进行控制。
其他语种文摘 A novel underwater thrust vectoring method based on cross second flow was proposed. In this method, the main flow can be deflected by the flow field induced by the cross second flow. A mathematical model relating the thrust vectoring angle to the flow vectoring angle was established. This model validated the feasibility of thrust vectoring through flow deflection. The effects of the depth of the second flow, the volume ratio as well as the velocity ratio of second flow to the main flow on the deflection angle were studied through numerical method. The numerical results showed that the deflection angle of the main flow decreased with the increase of the depth because of the variation of the adverse pressure at the nozzle. With the decrease of the volume ratio the deflection angle increased. And when the volume ratio was lower than a specific value, the deflection angle didn't vary any more. The deflection angle increased with the velocity ratio, and at a certain velocity ratio, the magnitude of the velocity had no effect on the deflection angle. Based on these numerical results, an underwater thrust vectored propulsor was designed. The simulation about this propulsor reveals that the maximum deflection angle can be realized when all the second jets at the same side of the midship section of the main flow are activated simultaneously. The deflection direction of the main flow can be controlled through activating different groups of second jets.
来源 航空动力学报 ,2017,32(8):1922-1932 【核心库】
DOI 10.13224/j.cnki.jasp.2017.08.016
关键词 横向 ; 二次射流 ; 水下推力矢量 ; 水下机器人 ; 矢量推进器
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 1000-8055
学科 航空
基金 国家重点研发计划课题
文献收藏号 CSCD:6079431

参考文献 共 16 共1页

1.  蒋新松. 水下机器人,2000 被引 104    
2.  吴宝山. 潜艇组合翼舵的水动力非线性特性研究. 船舶力学,2008,12(1):54-58 被引 7    
3.  郭春雨. 襟翼舵的敞水及桨后水动力性能研究. 华中科技大学学报(自然科学版),2008,36(11):108-111 被引 5    
4.  高富东. 多矢量推进水下航行器6自由度非线性建模与分析. 机械工程学报,2011,47(5):93-100 被引 10    
5.  Yoerger D R. Surveying a subsea lava flow using the autonomous benthic explorer (ABE). International Journal of Systems Science,1998,29(10):1031-1044 被引 1    
6.  Wang H H. OTTER: the design and development of an intelligent underwater robot. Autonomous Robots,1996,3(2):297-320 被引 1    
7.  Yuh J. Design and control of autonomous underwater robots: a survey. Autonomous Robots,2000,8(1):7-24 被引 37    
8.  魏东杰. 水下机器人并联式矢量推进器设计与研究,2013 被引 1    
9.  Nawrot M T. Conceptual design of a thrust-vectoring tailcone for underwater robotics,2012 被引 3    
10.  Cavallo E. Conceptual design of an AUV equipped with a three degrees of freedom vectored thruster. Journal of Intelligent and Robotic Systems,2004,39(4):365-391 被引 8    
11.  Ba Xin. A vectored water jet propulsion method for autonomous underwater vehicles. Ocean Engineering,2013,74(3):133-140 被引 8    
12.  肖中云. 一种基于引射效应的流体推力矢量新技术. 航空学报,2012,33(11):1966-1974 被引 1    
13.  邓雄. 合成双射流矢量特性影响因素分析. 推进技术,2014,35(8):1131-1138 被引 2    
14.  曹永飞. 基于被动二次流的射流偏转比例控制. 航空学报,2015,36(3):757-763 被引 6    
15.  吴雄. 固体火箭发动机二次喷射控制矢量喷管流场仿真. 国防科技大学学报,2006,28(2):22-25 被引 2    
16.  陈著. 射流控制反推力装置流场数值研究. 推进技术,2014,35(9):1181-1187 被引 5    
引证文献 5

1 乌岳 水下点火固体火箭发动机两相流流场数值分析 航空动力学报,2018,33(10):2508-2514
被引 3

2 张凯 矢量泵喷推进器水动力性能 船舶工程,2019,41(4):36-41,144
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号