帮助 关于我们

返回检索结果

碳纳米管与石墨烯协同改性天然石墨及其电化学性能
Combination Carbon Nanotubes with Graphene Modified Natural Graphite and Its Electrochemical Performance

查看参考文献22篇

文摘 以碳纳米管和氧化石墨烯为原料,二者按5∶3混合超声分散再高温还原制备碳纳米管/石墨烯/天然石墨(CNTs/ rGO/NG)锂离子复合负极材料。采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)和电化学测试等分析技术对复合材料的形貌、结构、电化学进行表征。结果表明:石墨烯和碳纳米管在天然石墨表面形成三维立体网络结构。与纯天然石墨相比,CNTs/rGO/NG复合材料具有良好的倍率性能和循环寿命,在0.1C时首次放电比容量为479mAh/g,可逆容量达473mAh/g,循环100次后容量为439.5mAh/g,容量保持率为92%,在0.5,1,5C不同电流倍率时容量依次为457,433,394mAh/g。
其他语种文摘 The CNTs/rGO/NG composite lithiumion battery anode material was synthesized by thermal reducing,using graphene oxide(GO)and carbon nanotubes(CNTs)as precursors for a 5∶3proportion. The morphology,structure,and electrochemical performance of the composite were characterized by scanning electron microscopy(SEM),X-ray diffractometry(XRD),Fourier transform infrared spectra(FTIR)and electrochemical measurements.The results show that reduced graphene oxide and carbon nanotubes form a perfect three-dimensional network structure on the surface of natural graphite.CNTs/rGO/NG composite has good rate performance and cycle life,compared with pure natural graphite.The initial discharge capacity of designed anode is 479mAh/g at 0.1C,the reversible capacity up to 473mAh/g after 100cycles,the capacity is still 439.5mAh/g,the capacity retention rate is 92%,and the capacity is 457,433,394mAh/g at 0.5,1,5C,respectively.
来源 材料工程 ,2017,45(4):121-127 【核心库】
DOI 10.11868/j.issn.1001-4381.2016.001044
关键词 碳纳米管 ; 氧化石墨烯 ; 负极材料 ; 电化学性能 ; 三维网络结构
地址

中南林业科技大学材料科学与工程学院, 长沙, 410004

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 电工技术
基金 国家自然科学基金重点资助项目 ;  湖南省自然科学基金重点项目
文献收藏号 CSCD:6048792

参考文献 共 22 共2页

1.  Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58 被引 3356    
2.  Geim A K. The rise of graphene. Nature Materials,2007,6(3):183-191 被引 2268    
3.  Mittal G. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry,2015,21:11-25 被引 29    
4.  Kholmanov I N. Optical, electrical,and electromechanical properties of hybrid graphene/carbon nanotube films. Advanced Materials,2015,27(19):3053-3059 被引 8    
5.  刘强. 多壁碳纳米管增强铝基复合材料的高温力学性能. 材料工程,2016,44(4):20-25 被引 2    
6.  Fang T H. Mechanical characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes using molecular dynamics simulations. Applied Surface Science,2015,356:221-225 被引 1    
7.  Fang S. Ge-graphene-carbon nanotube composite anode for high performance lithium-ion batteries. Journal of Materials Chemistry A,2015,3(4):1498-1503 被引 6    
8.  Ye M. Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life. Journal of Power Sources,2016,305:106-114 被引 2    
9.  Cui X. Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochimica Acta,2015,169:342-350 被引 6    
10.  周晓. 石墨烯负载新型π-共轭聚合物纳米复合电极材料的合成及其超级电容特性. 物理化学学报,2016,32(4):975-982 被引 6    
11.  Xin G. Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor. Electrochimica Acta,2015,167:254-261 被引 3    
12.  Govindhan M. Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis,2015,27(4):902-909 被引 2    
13.  Li S. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Advanced Energy Materials,2011,1(4):486-490 被引 7    
14.  Lei W. Carbon nanotubes and graphene for flexible electrochemical energy storage:from materials to devices. Advanced Materials,2016,28(22):218 被引 1    
15.  Zhu C. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites:advantageous functional integration of 0D,1D,and 2Dnanostructures. Advanced Energy Materials,2015,5(4) 被引 1    
16.  Vinayan B P. Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. Journal of Materials Chemistry,2012,22(19):9949-9956 被引 11    
17.  Huang Z D. Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries. Composites Part A: Applied Science and Manufacturing,2016,84:386-392 被引 1    
18.  Zhang J. High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon,2014,74:153-162 被引 3    
19.  邓凌峰. 碳纳米管/天然石墨复合负极材料的制备与表征. 人工晶体学报,2016,45(4):1041-1046 被引 3    
20.  刘晓峰. 3D α-Fe_2O_3 /掺氮石墨烯/碳纳米管复合材料及其储锂性能. 无机化学学报,2014,30(2):242-250 被引 7    
引证文献 13

1 刘珍红 碳纳米管纸/纳米硅复合电极的锂离子电池性能 材料工程,2018,46(1):99-105
被引 7

2 朱诗尧 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征 材料工程,2018,46(6):27-35
被引 3

显示所有13篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号