帮助 关于我们

返回检索结果

非晶合金“拉伸转变区”模型
The “ tension transformation zone” model of amorphous alloys

查看参考文献82篇

蒋敏强 *   戴兰宏 *  
文摘 非晶合金是熔体深度过冷至玻璃态转变, 结构发生突然“冻结”而形成的玻璃态固体. 在远低于玻璃转变温度, 非晶合金的宏观断裂通常由塑性变形局部化剪切带诱导. 尽管非晶塑性机理还未完全揭示, 但普遍认为剪切带模式的裂尖塑性流动源于材料内部原子集团的局部剪切重排, 即“剪切转变区(shear transformation zone, STZ)”事件. 但是, 越来越多的工作表明, 非晶合金的断裂并非总是由剪切带诱导, 而呈现脆性的拉伸正断, 并涌现出一种新的断裂面斑图: 纳米周期条痕. 针对这一全新的断裂能耗散过程, 我们在2008年提出了非晶合金的“拉伸转变区(tension transformation zone, TTZ)”模型. 本文将简要介绍非晶合金“拉伸转变区”模型的提出、内涵本质、激活条件、原子模拟和韧脆转变实验验证等, 并对该模型的未来发展进行评述.
其他语种文摘 An amorphous alloy is a glassy solid that is formed through the supercooling of a melt. As the melt cools via the glass transition, its atoms freeze into a long-range disordered structure. Amorphous alloys represent a relatively young class of materials, having been first reported in 1960 when Duwez and co-workers produced Au-Si alloys by developing the rapid-quenching technology. The advent of amorphous alloys, especially the bulk samples with their characteristic size in excess of 1 mm, has aroused much interests in the basic science of glass transition, glass structure, and their intriguing properties. For crystalline metals, their structure can be well described by the period lattices and lattice defects including dislocations, twins, stacking faults, grain doundaries, etc. However, these traditional structural defects are not defined in amorphous alloys. Therefore, this type of atomic-disordered alloys manifest a series of excellent mechanical properties, including extraordinary strength, high hardness, large elastic limit and relatively high fracture toughness, making them attractive candidates for many potential applications as structural materials. At temperatures far below the glass transition temperature, the failure of amorphous alloys is generally induced by 10 nm thick shear banding with the single-dominated or multiple mode. It is well known that the shear banding is an instability mode of plastic flow from homogeneous to localized feature. Although the precise mechanism for amorphous plasticity is not well discovered, it is widely accepted that the shear-banding-mediated plasticity originates from a cascade of inelastic shear rearrangements of local atomic groups, called shear transformation zones (STZs). The STZs are thermally activated events with the transient nature, driven by shear stress and giving rise spatially to Eshelby fields. However, many recent works have shown that the failure of amorphous alloys is not always dominated by the shear banding; instead, a brittle failure will take place with a tension mode. The latter is usually accompanied with a new type of fracture surface morphology: fine dimples and/or nanoscale periodic corrugations. In order to understand such a dissipation process of fracture energy, we proposed the “tension transformation zone (TTZ)” model of amorphous alloys in 2008. The TTZ describes the brittle nucleation-controlled cavitation of local atomic groups that can be activated by shear-induced dilatation or direct hydrostatic tension. Here, we review how the TTZ model was developed, including its inherent nature, activation conditions, atomistic simulations and relevant experiments. The difference and relationship between the proposed TTZ and the classical cavitation are extensively discussed. Therefore, the energy dissipation in fracture of amorphous alloys is determined by two competing elementary processes, via. STZs and TTZs ahead of the crack tip. Based on this STZ vs. TTZ picture, the ductile-to-brittle transition of amorphous alloys can be understood as the change in the nature of transformation zones from shear-dominated STZs to dilatation-dominated TTZs. This review ends with the key aspects that deserve further study regarding the TTZ model. These aspects, at least, include (1) the experimental capture of TTZs,(2) the dynamics properties, (3) the spatio-temporal evolution, and (4) the theoretical construction from TTZs to brittle failure in amorphous alloys.
来源 科学通报 ,2017,62(21):2346-2357 【核心库】
DOI 10.1360/N972016-00509
关键词 非晶合金 ; 剪切带 ; 断裂 ; 剪切转变区 ; 拉伸转变区
地址

中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0023-074X
学科 金属学与金属工艺
基金 国家自然科学基金优秀青年科学基金 ;  国家自然科学基金 ;  中国科学院前沿科学重点研究项目 ;  中国科学院战略性先导科技专项
文献收藏号 CSCD:6041537

参考文献 共 82 共5页

1.  Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets. J Chem Phys,1952,20:411-424 被引 20    
2.  Klement W I. Non-crystalline structure in solidified gold-silicon alloys. Nature,1960,187:869-870 被引 243    
3.  Inoue A. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater Trans JIM,1990,31:177-183 被引 80    
4.  Peker A. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett,1993,63:2342-2344 被引 285    
5.  Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater,2000,48:279-306 被引 586    
6.  Wang W H. Bulk metallic glasses. Mater Sci Eng: R,2004,44:45-89 被引 293    
7.  Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci,2012,57:487-656 被引 142    
8.  Sheng H W. Atomic packing and short-to-medium range order in metallic glasses. Nature,2006,439:419-425 被引 117    
9.  Hirata A. Direct observation of local atomic order in a metallic glass. Nat Mater,2011,10:28-33 被引 32    
10.  Liu X J. Metallic liquids and glasses: Atomic order and global packing. Phys Rev Lett,2010,105:155501 被引 20    
11.  Ma D. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater,2009,8:30-34 被引 42    
12.  Zeng Q S. Long-range topological order in metallic glass. Science,2011,332:1404-1406 被引 16    
13.  Wang W H. Bulk metallic glasses with functional physical properties. Adv Mater,2009,21:4524-4544 被引 44    
14.  Jiang M Q. Metallic glass nanofilms. J Non-Cryst Solids,2011,357:1621-1627 被引 5    
15.  Huang X. Amorphous alloy reinforced Whipple shield structure. Int J Impact Eng,2012,42:1-10 被引 14    
16.  Li N. A thermoplastic forming map of a Zr-based bulk metallic glass. Acta Mater,2013,61:1921-1931 被引 15    
17.  Jiang M Q. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation. Appl Phys Lett,2015,106:021904 被引 11    
18.  Jiang M Q. Joining of bulk metallic glass to brass by thick-walled cylinder explosion. Scripta Mater,2015,97:17-20 被引 4    
19.  Chen X W. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target. Int J Impact Eng,2015,79:102-116 被引 19    
20.  Zhang Y. Thickness of shear bands in metallic glasses. Appl Phys Lett,2006,89:071907 被引 21    
引证文献 4

1 沙振东 金属玻璃的微结构、增韧与疲劳问题研究进展 固体力学学报,2018,39(4):333-374
被引 1

2 唐晓畅 金属玻璃动态拉伸断裂(层裂)中的损伤演化行为 科学通报,2021,66(15):1847-1860
被引 2

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号