帮助 关于我们

返回检索结果

下肢外骨骼康复机器人系统设计与研究
Design and Control of Lower Limb Exoskeleton Robot for Rehabilitation

查看参考文献22篇

薛增飞 1   赵新刚 1   林光模 1   苏陈 2  
文摘 针对脑卒中等神经系统损伤造成的运动功能障碍,原位康复是有效的康复手段。下肢助力外骨骼机器人能够帮助患有下肢运动碍的患者实现行走或者康复训练,满足原位康复要求。设计了一款下肢助力外骨骼,此外骨骼单腿有5个自由度,膝关节和髋关节在矢状平面的屈伸是主动关节,每1个关节由滚珠丝杠和滑块摇杆机构组成,踝关节的背/跖屈采用弹簧来提高阻尼。分析了传动机构的传动特点,组建了外骨骼系统,包括传感器、总线结构、电源等。利用vicon运动捕捉系统采集人体关节的运动轨迹,作为外骨骼关节的参考轨迹。最后,在实验样机上进行了实验,结果表明,在拐杖帮助下,外骨骼机器人能够按照预定义的轨迹行走,能够实现对轨迹跟踪。
其他语种文摘 Orthotopic rehabilitative training is an effective kind of rehabilitation means for people with motor dysfunction which is caused by nervous system injury, like stroke. Lower limb powered exoskeleton robots can help patients to achieve walking or rehabilitation training, and satisfy the requirement of orthotopic rehabilitation. Because of this demand, we design a powered exoskeleton that has five degrees of freedom. The flexion and extension of the hip and knee in the sagittal plane are active. And, each joint is composed of a ball screw and a slider rocker mechanism. A spring in the ankle is used to improve the performance of damping. We analyze the transmission characteristics of the transmission mechanism, and then build the exoskeleton system, which includes sensors, bus structure, a power supply, etc. The lower limb joint data of the normal subjects are obtained as the reference trajectories which are collected by a motion capture system (vicon). Finally, the gaits are tested on the experimental prototype. Experimental results show that with the help of crutches, the exoskeleton robot is able to walk along the predefined trajectories, and could realize the trajectory tracking.
来源 控制工程 ,2017,24(7):1291-1296 【扩展库】
DOI 10.14107/j.cnki.kzgc.160555
关键词 外骨骼机器人 ; 步态 ; 下肢 ; 行走
地址

1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳, 110016  

2. 燕山大学机械工程学院, 秦皇岛, 066004

语种 中文
文献类型 研究性论文
ISSN 1671-7848
学科 自动化技术、计算机技术
基金 国家863计划
文献收藏号 CSCD:6025323

参考文献 共 22 共2页

1.  Dryden D M. Utilization of health services following spinal cord injury: A 6-yearfollow-up study. Spinal Cord,2004,42(9):513-525 被引 1    
2.  Organization W H. International perspectives on spinal cord injury. Weed Research,2013,11(4):314-316 被引 3    
3.  Vukobratovic M K. When were active exoskeletons actually born?. International Journal of Humanoid Robotics,2007,4(3):459-486 被引 1    
4.  Suzuki Kenta. Intention-based walking support for paraplegia patients with robot suit HAL. Advanced Robotics,2007,21(12):1441-1469 被引 19    
5.  Kawamoto Hiroaki. Power assist system HAL-3 for gait disorder person. International Conference on Computers Helping People, 2398,2002:196-203 被引 1    
6.  Tsukahara Atsushi. Gait support for complete spinal cord injury patient by synchronized leg-swing with HAL. IEEE/Rsj International Conference on Intelligent Robots and Systems,2011:1737-1742 被引 1    
7.  Kazerooni H. Exoskeletons for human power augmentation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1-4,2005:3120-3125 被引 1    
8.  Kazerooni H. The berkeley lower extremity exoskeleton. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2006,128(1):14-25 被引 18    
9.  Farris R J. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2011,19(6):652-659 被引 16    
10.  Quintero H A. A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Inj Rehabil,2011,17(1):25-33 被引 8    
11.  Murray Spencer. Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. 34th Annual International Conference of the IEEE EMBS,2012:1912-1915 被引 1    
12.  饶玲军. 下肢外骨骼行走康复机器人研究与设计. 机械设计与研究,2012,28(3):24-26 被引 12    
13.  Lu R. Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Transactions on Industrial Electronics,2014,61(7):3776-3785 被引 4    
14.  Quintero H A. Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. 2011 IEEE International Conference on. IEEE,2011:1-6 被引 1    
15.  李醒. 上肢康复机器人鲁棒重复控制方法的研究. 控制工程,2015,22(6):1022-1027 被引 3    
16.  Hong Y W. Lower extremity exoskeleton: review and challenges surrounding the technology and its role in rehabilitation of lower limbs. Australian J Basic App Sci,2013,7(7):520-524 被引 1    
17.  Zoss A B. Biomechanical design of the Berkeley lower extremity mechatronics. IEEE/ASME Trans Mechatron,2006,11(2):128-138 被引 64    
18.  Fan Y. Active and progressive exoskeleton rehabilitation using multisource information fusion from emg and rce-position epp. IEEE Trans Biomed Eng,2013,60(12):3314-3321 被引 3    
19.  Colombo G. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev,2000,37(6):693-700 被引 34    
20.  Quintero Hugo A. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia. Journal of Medical Devices,2012,6(4):3097-3106 被引 5    
引证文献 3

1 韩继凯 基于傅里叶级数的踝关节运动模型研究 机械传动,2018,42(8):98-103
被引 0 次

2 霍金月 穿戴式下肢外骨骼助行机器人系统研究 中国康复理论与实践,2019,25(4):481-486
被引 6

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号