帮助 关于我们

返回检索结果

核电站316L不锈钢弯头应力腐蚀行为的寿命预测
Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant

查看参考文献27篇

文摘 采用数值模拟方法对核电站316L不锈钢弯头的应力腐蚀裂纹扩展行为进行了研究。首先针对不锈钢厚壁弯头(外径355.6 mm,内径275.6 mm)进行有限元建模,在弯头内壁上创建出与实际裂纹相符的半椭圆状3D缺陷作为裂纹形状,其裂纹张开位移(δi)由Dugdale模型计算确定;然后根据有限元计算结果,建立裂纹应力强度因子(K)随裂纹深度(a)及附加应力(P)变化的拟合公式,结合实验数据得到管材在2种冷变形量下的应力腐蚀裂纹扩展速率(da/dt)拟合公式,利用迭代方法计算了裂纹穿透管壁所需的时间,为核电站安全评估提供了有效依据。研究显示,当弯头部位的冷变形量较小(硬度为230~245 HV)且在理想情况下(无初始附加应力),弯头被应力腐蚀裂纹穿透耗时最长(约57 a);当初始附加应力增加至200 MPa,此失效时间约缩减至前者的1/5 (无应力释放)、2/7 (应力释放一半)以及3/7 (应力完全释放);保持初始附加应力不变(200 MPa)并提高弯头部位冷加工变形量(由硬度为230~245 HV提高到275~300HV),弯头的大变形部位被穿透时间约缩短至小变形部位失效时间的2/5 (无应力释放)、3/8 (应力释放一半)以及1/3 (应力完全释放),由此可见应力释放程度的降低和冷加工变形量的增加均导致了核电站316L不锈钢弯头剩余寿命的缩短。
其他语种文摘 Stress corrosion cracking (SCC) is one of the main ageing mechanism in light water reactor (LWR).316L austenitic stainless steel was adopted in nuclear industry for its relatively high corrosion resistance. The SCC of austenitic stainless steel may occur as it is subjected to both the tensile stress and the caustic medium, with regard to maintaining the structural integrity of components in nuclear power plant, an accurate prediction and efficient assessment of the component lifetime is significant and necessary. The stress corrosion crack propagation behavior of the 316L stainless steel elbow of nuclear power plant was investigated through a numerical simulation method. Firstly a finite element (FE) model was created for the stainless steel thick-walled elbow (the outer diameter is 355.6 mm, the inner diameter is275.6 mm), with a semi-elliptical shaped 3D defect introduced at the internal surface of the elbow as the geometry of the crack, which was consistent with a practical crack, the crack opening displacement (δi) was determined by the calculations through the Dugdale model; subsequently, according to the FE calculation results, establish the fitting formula of the stress intensity factor (K) varying with the crack depth (a) and additional stress (P), and the fitting formula of the stress corrosion crack propagation rate (da/dt) for elbows under two types of cold work deformation was deduced through the combination with the experimental data, the crack propagation time was then calculated using a iterative method for cracks which evolved from different initial crack depth values to certain crack depth values. The calculation results provided effective reference criterion for the nuclear power plant safety assesment. This investigation demonstrated that, when the cold deformation extent of the elbow part is relatively small (with the hardness of230~245 HV) and it is under the ideal condition (no initial additional stress),it takes around 57 a for the stress corrosion crack to penetrate the elbow, when the initial additional stress was elevated to 200 MPa, the elbow failure time was shrinked to 1/5 (no stress release), 2/7 (half-stress release) and 3/7 (total stress release) of the former; keep the same initial additional stress (200 MPa) and increase the cold work deformation extent (the hardness was increased from 230~245 HV to 275~300 HV), the elbow failure time was shortened to 2/5 (no stress release), 3/8 (half-stress release) and 1/3 (total stress release) for the elbow part with higher cold deformation extent compared to the part with lower cold deformation extent, thus it was observed that both the decrease of the extent of stress relaxation and the increase of the extent of cold work deformation contributed to the reduction of the residual life of the nuclear power plant 316L stainless steel elbow.
来源 金属学报 ,2017,53(4):455-464 【核心库】
DOI 10.11900/0412.1961.2016.00462
关键词 316L不锈钢弯头 ; 应力腐蚀裂纹扩展 ; 裂纹张开位移 ; 有限元分析 ; 应力释放 ; 冷加工变形
地址

中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0412-1961
学科 金属学与金属工艺
基金 国家973计划
文献收藏号 CSCD:5958937

参考文献 共 27 共2页

1.  韩恩厚. 核电高温高压水中不锈钢和镍基合金的腐蚀机制. 金属学报,2010,46:1379 被引 35    
2.  潘品李. 大型核电主管道制造技术的发展. 锻压装备与制造技术,2011,46(1):13 被引 13    
3.  李永奎. 核反应堆关键焊接结构应力腐蚀裂纹失效评估. 焊接学报,2013,34(9):33 被引 3    
4.  Terachi T. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water. J. Nucl. Mater,2012,426:59 被引 17    
5.  张利涛. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为. 金属学报,2013,49:911 被引 8    
6.  Huang Y Z. TEM investigation of intergranular stress corrosion cracking for 316 stainless steel in PWR environment. Acta Mater,2006,54:635 被引 4    
7.  Fujii T. Experimental and numerical investigation of stress corrosion cracking of sensitized type 304 stainless steel under high-temperature and high-purity water. Corros. Sci,2015,97:139 被引 2    
8.  Jivkov A P. A two-dimensional mesoscale model for intergranular stress corrosion crack propagation. Acta Mater,2006,54:3493 被引 1    
9.  Wenman M R. A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel. Acta Mater,2008,56:4125 被引 5    
10.  Zhu X K. Review of fracture toughness (G,K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech,2012,85:1 被引 29    
11.  Werner K. The fatigue crack growth rate and crack opening displacement in 18G2A-steel under tension. Int. J. Fatigue,2012,39:25 被引 3    
12.  陈学德. 秦山核电二期工程反应堆主冷却剂管道系统辅助接管嘴的弹塑性分析. 核动力工程,2003,24(S1):122 被引 1    
13.  陈爱军. 带裂纹厚壁圆筒应力强度因子的几种计算方法. 南京理工大学学报,2002,26:430 被引 7    
14.  Galvele J R. 1999 W.R. Whitney Award Lecture: Past, present, and future of stress corrosion cracking. Corrosion,1999,55:723 被引 1    
15.  Gutman E M. An inconsistency in "film rupture model" of stress corrosion cracking. Corros. Sci,2007,49:2289 被引 2    
16.  Scully J C. The Theory of Stress Corrosion Cracking in Alloys,1971:21 被引 1    
17.  褚武扬. 氢损伤和滞后断裂,1988:1 被引 2    
18.  肖纪美. 应力作用下的金属腐蚀,1990:1 被引 1    
19.  褚武扬. 氢致开裂和应力腐蚀机理新进展. 自然科学进展,1991(5):393 被引 2    
20.  侯小振. 冷加工对316L不锈钢力学行为和组织的影响. 钢铁研究学报,2013,25(7):53 被引 3    
引证文献 5

1 余晨帆 选区激光熔化316L不锈钢的拉伸性能 金属学报,2020,56(5):683-692
被引 12

2 史伟 低温去应力退火对板式换热器用316L不锈钢冷冲压波纹板耐蚀性能的影响 金属热处理,2021,46(7):140-143
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号