帮助 关于我们

返回检索结果

6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究
Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel

查看参考文献26篇

陈思含 1   梁田 2 *   张龙 2   马颖澈 2   刘政军 1   刘奎 2  
文摘 利用OM、SEM、XRD和TEM等方法对6%Si铸态高硅奥氏体不锈钢在不同固溶处理温度下的bcc相的演变规律进行了研究,分析了不同固溶处理温度下组织中bcc相的回溶与重新析出过程中元素变化、形貌和结构特征,并制定合理的热处理制度。结果表明,6%Si高硅不锈钢铸态组织中的析出相主要为bcc相,该相沿晶界和枝晶间分布,并富含Mo、Si、Ni等元素,晶格常数a=0.8747nm。样品在1050~1200 ℃、2 h固溶处理时,bcc析出相中的Mo、Cr元素含量随温度的升高而增加;当温度达到1200 ℃时bcc相发生回溶,在1250 ℃、2h固溶处理时bcc相重新析出。
其他语种文摘 After decades of development, high silicon austenitic stainless steels are widely concerned about due to their excellent corrosion resistance and good mechanical properties. Till now, 4%Si high silicon stainless steel has been widely used, but it is not doing well under the condition of high temperature and strong oxidizing medium.6%Si high silicon austenitic stainless steels can resist in the strong oxidizing medium when the temperature is up to 100℃. But the increasing of Si may lead to the increasing of precipitation such as bcc phase, which may cause hot cracks during heat processing. As a result, obtaining a temperature range which is without precipitation is essential. The bcc phase evolution mechanism of 6%Si as-cast high silicon austenitic stainless steel under different solid solution treatment temperature was investigated by means of OM,SEM, XRD and TEM in this work. In order to study the precipitation and re-dissolution of bcc phase, the distribution of alloy elements, morphology and crystal structure of the bcc phase were analyzed under different solution treatments. Moreover, the heat-treated schedules were made based on the experimental results. The results indicated that the solid solution treatment temperatures had a great influence on the microstructure of 6%Si high silicon austenitic stainless steel. The precipitates existed in the as-cast structure were mainly bcc phase with a lattice constant of 0.8747 nm,rich in Mo, Si and Ni elements, and distributed in grain interior and grain boundary. The bcc phase redissolved during the solution when the temperature was between 1050~1200℃ for 2 h. The contents of Mo, Si and Ni increased with the rising solution temperature. Furthermore, the bcc phase reprecipitated when the test specimen was heat treated at 1250℃ for 2 h. The re-precipitated phase has the same composition with that in the as-cast structure. Thus the optimal solid solution treatment temperature of 6%Si high silicon austenitic stainless is 1100~1200℃ for 2 h.
来源 金属学报 ,2017,53(4):397-405 【核心库】
DOI 10.11900/0412.1961.2016.00294
关键词 6%Si铸态高硅奥氏体不锈钢 ; bcc相 ; 回溶 ; 重析出
地址

1. 沈阳工业大学材料科学与工程学院, 沈阳, 110870  

2. 中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0412-1961
学科 金属学与金属工艺
文献收藏号 CSCD:5958930

参考文献 共 26 共2页

1.  李志强. 耐浓硫酸用高硅不锈钢和高硅镍合金研究现状与趋势. 化工机械,1998,25(1):50 被引 1    
2.  Armijo J S. Influence of Si content on the corrosion resistance of austenitic Fe-Cr-Ni alloys in oxidizing acids. Corros. Sci,1968,8:649 被引 5    
3.  邱德良. DS-1高硅奥氏体不锈钢板在硫酸工业中的应用. 硫磷设计与粉体工程,2005(1):18 被引 2    
4.  Burstein D T. The remarkable passivity of austenitic stainless steel in sulphuric acid solution and the effect of repetitive temperature cycling. Corros.Sci,2009,51:2249 被引 4    
5.  常凤华. SAF2304、SAF2205和SAF2507级别Sandvik双相不锈钢的焊接技巧. 锅炉制造,1995(1):64 被引 1    
6.  杜存臣. 奥氏体不锈钢在工业中的应用. 化工设备与管道,2003,40(2):54 被引 10    
7.  刘焕安. 硫酸用不锈钢研究发展综述. 硫酸工业,1999(1):1 被引 4    
8.  冈毅民. 硝酸用钢的发展及其选择. 化工设计,2004,14(3):6 被引 4    
9.  马艳红. 高硅对不锈钢耐高温浓硫酸腐蚀行为的影响. 上海金属,1999,21(5):27 被引 3    
10.  李慧. Fe-3.15%Si低温取向硅钢不同常化工艺下的组织及析出相研究. 金属学报,2013,49:562 被引 7    
11.  Bratukhin A G. Structure and properties of high-strength corrosion-resistant siliconalloyed sheet steel. Met. Sci. Heat Treat,1993,35:12 被引 2    
12.  陈祥. 硅对等温淬火高硅铸钢组织和性能的影响. 机械工程材料,2000,24(2):14 被引 8    
13.  王桂林. 高硅耐磨铸钢化学成分和热处理工艺的优化设计. 热加工工艺,2011,40(9):39 被引 2    
14.  欧金玉. 关于几种高硅抗浓硝酸腐蚀用钢的组织和耐腐蚀性能的探讨. 特殊钢,1981(4):61 被引 1    
15.  刘焕安. 高温浓硫酸用XDS-1高硅奥氏体不锈钢的研制与应用. 硫磷设计与粉体工程,2007(4):25 被引 2    
16.  文玉华. 高Si奥氏体高Mn钢加工硬化行为及机制的研究. 金属学报,2012,48:1153 被引 4    
17.  陈祥. 等温淬火高硅铸钢的断裂韧性. 金属学报,2005,41:1061 被引 7    
18.  刘萍. 发烟硝酸吸收塔新材料C4钢的应用. 石油和化工设备,2007,10(4):63 被引 2    
19.  沈伟彬. KY704高硅奧氏体不锈钢无缝管生产工艺研究及技术开发. 钢管,2001,30(5):17 被引 2    
20.  Ogundare O. Atmospheric corrosion studies of ductile iron and austenitic stainless steel in an extreme marine environment. J. Miner. Mater. Charact. Eng,2012,11:914 被引 3    
引证文献 5

1 彭成 固溶处理温度对高硅锰铬镍奥氏体不锈钢晶间腐蚀的影响 金属热处理,2019,44(6):128-132
被引 4

2 许峰 固溶温度对316L奥氏体不锈钢δ铁素体转变的影响 稀有金属材料与工程,2021,50(8):2921-2926
被引 2

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号