帮助 关于我们

返回检索结果

圆球诱发斜爆轰波的数值研究
NUMERICAL STUDY OF THE OBLIQUE DETONATION INITIATION INDUCED BY SPHERES

查看参考文献29篇

文摘 斜爆轰发动机是飞行器在高马赫数飞行条件下的一种新型发动机,具有结构简单、成本低和比冲高等优点. 但是斜爆轰发动机的来流马赫数范围广,来流条件复杂,为实现斜爆轰波的迅速、可靠引发,采用钝头体来诱发. 利用Euler 方程和氢氧基元反应模型,对超声速氢气/空气混合气体中圆球诱导的斜爆轰流场进行了数值研究. 不同于楔面诱发的斜爆轰波,球体首先会在驻点附近诱发正激波/爆轰波,然后在稀疏波作用下发展为斜激波/爆轰波. 模拟结果显示,经过钝头体压缩的预混气体达到自燃温度后,会出现两种流场:当马赫数较低时,由于稀疏波的影响,燃烧熄灭,钝头体下游不会出现燃烧情况;而当马赫数较高时,燃烧阵面能传到下游.分析表明,当钝头体的尺度较小时,驻点附近的能量不足以诱发爆轰波,只会形成明显的燃烧带与激波非耦合结构;当钝头体的尺度较大时,流场中不会出现燃烧带与激波的非耦合现象,且这一特征与马赫数无关. 通过调整球体直径,获得了激波和燃烧带部分耦合的燃烧流场结构,这一流场结构在楔面诱发的斜爆轰波中并不存在,说明稀疏波与爆轰波面的相互作用是决定圆球诱发斜爆轰波的关键.
其他语种文摘 The oblique detonation wave engine is a new kind of engine which has a simple structure, low cost, and high specific impulse. In order to ensure the initiation, blunt body is used to induce the oblique detonation wave. The oblique detonation wave flow field induced by spheres in supersonic hydrogen/air mixture is numerically simulated, based on the Euler equations and a detailed hydrogen-oxygen chemical reaction model. Unlike the oblique detonation wave induced by a wedge, the reacting flow around a sphere is much more complex. First, a normal shock wave/detonation wave is formed, then oblique shock wave/detonation wave is developed in the presence of a rarefaction wave. The numerical simulation results show that after the gases being compressed by the blunt body and reaching the auto-ignition temperature, two kinds of flowfileds will appear. When Mach numbers are low, the combustion will be quenched and can not appear downstream of the blunt body due to the influence of the rarefaction wave. When Mach numbers are high, combustion can spread to the downstream region. When the scales of blunt body are small, energy around the stationary point is not enough to induce detonation initiation and an obvious decoupling of combustion and shock wave is formed. As the sphere becomes large enough, decoupling of combustion and shock wave will not appear in the flow and this feature is indpendent of the Mach number. By adjusting the spheric diameter, the flow structures with partial coupling of shock wave and combustion zone was obtained which does not exist in a wedgy-induced oblique detonation. The present investigations suggest that the interaction between rarefaction wave and detonation wavefront is the key issue for detonation initiation induced by a spheric body.
来源 力学学报 ,2017,49(2):268-273 【核心库】
DOI 10.6052/0459-1879-16-143
关键词 斜爆轰 ; 氢氧 ; 起爆 ; 熄爆
地址

中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金资助项目
文献收藏号 CSCD:5951732

参考文献 共 29 共2页

1.  董刚. 氢气-空气混合物中瞬态爆轰过程的二维数值模拟. 高压物理学报,2004,18(1):40-46 被引 15    
2.  Lin W. Experimental study on propagation mode of H_2/air continuously rotating detonation wave. International Journal of Hydrogen Energy,2015,40(4):1980-1993 被引 20    
3.  Voland R T. X-43A hypersonic vehicle technology development. Acta Astronautica,2006,59(1/5):181-191 被引 34    
4.  林志勇. 预混超声速气流斜激波诱导脱体爆轰研究. 航空动力学报,2009,24(1):50-54 被引 4    
5.  Rudy W. Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confined geometry. International Journal of Hydrogen Energy,2016:1-8 被引 1    
6.  Wang C. Parallel adaptive mesh refinement method based on WENO finite di erence scheme for the simulation of multi-dimensional detonation. Journal of Computational Physics,2015,298:161-175 被引 3    
7.  Zhang Z. Numerical studies of multi-cycle acetyleneair detonation induced by shock focusing. Procedia Engineering,2015,99:327-331 被引 1    
8.  王成. 障碍物对氢氧预混气体爆轰波传播的影响. 庆祝中国力学学会成立50周年暨中国力学学会学术大会,2007 被引 1    
9.  Li C. Detonation structures behind oblique shocks. Phys Fluids,1994,6:1600-1611 被引 28    
10.  Viguier C. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixtures. Proc Combust Inst,1997,26:3023-3031 被引 15    
11.  Choi J Y. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc Combust Inst,2007,31:2473-2480 被引 29    
12.  Teng H H. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics,2014,744:111-128 被引 21    
13.  Teng H H. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame,2015,162(2):470-477 被引 12    
14.  Teng H H. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics,2012,713:659-669 被引 25    
15.  Zhang Y. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology,2016,49:130-134 被引 6    
16.  Wang T. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Physics of Fluids,2015,27(9):096101 被引 6    
17.  Lehr H F. Experiments on shock-Induced combustion. Astronautica Acta,1972,17:589-597 被引 31    
18.  Kaneshige M J. Oblique detonation stabilized on a hypervelocity projectile. 26th Symp. (Int.) on Combustion,1996:3015 被引 1    
19.  Ju Y. Numerical and theoretical studies on detonation initiation by a supersonic projectile. Symposium on Combustion,1998,27(2):2225-2231 被引 3    
20.  Maeda S. Visualization of the nonsteady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc Combust Inst,2011,33:2343-2349 被引 12    
引证文献 8

1 杨超 高温气体热化学反应的DSMC微观模型分析 力学学报,2018,50(4):722-733
被引 6

2 李俊红 曲面激波诱导斜爆轰的数值模拟 推进技术,2019,40(11):2521-2527
被引 2

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号