帮助 关于我们

返回检索结果

中亚沙尘气溶胶时空分布特征及潜在扩散特性分析
Spatio-temporal variations and potential diffusion characteristics of dust aerosol originating from Central Asia

查看参考文献34篇

文摘 中亚地处干旱和半干旱气候区,是全球沙尘气溶胶贡献度较大的区域。利用中分辨率成像光谱仪(Moderate-resolution Imaging Spectrometer, MODIS)和云一气溶胶偏振雷达(Cloud-Aerosol Lidar with Orthogonal Polarization,CALIOP)遥感数据,从宏观角度对2002-2015年中亚地区气溶胶光学厚度(Aerosol Optical Depth,AOD)时空分布特征及沙尘气溶胶光学特性垂直分布特征进行分析,利用拉格朗日混合型的扩散模型(Hybrid Single Particle Lagrangian Integrated Trajectory, HYSPLIT)讨论沙尘运输的季节性变化。结果表明:①中亚AOD空间分布呈现显著的季节性差异,四季均值春(0.412)>夏(0.258)>冬(0.167)>秋(0.159),14年间呈现增加趋势;②中亚AOD高值区域主要集中于咸海地区和新疆的塔里木盆地,其中,咸海地区AOD年均值为0.278,年均增幅为3.175%,主要受咸海退化所导致的干涸湖底裸露面积加大的影响;塔克拉玛干沙漠地区AOD年均值为0.421,年均增幅0.062%,主要受温度和风速两方面的影响,不同季节下主导因素略有差异;③尘源区气溶胶主要集中在近地面0~2km范围内,沙漠上空气溶胶退偏比范围(10%~45%)略大于咸海上空(15%~30%);咸海地区色比值(0.3~0.8)小于沙漠地区(0.5~0.9),且在0~2 km和4~6 km有两个高频色比值分别为0.5和0.3,说明相比沙尘气溶胶,咸海地区的盐尘气溶胶球形程度较高,颗粒更小,飘散高度更高;④咸海地区盐尘潜在扩散方向主要以东北,西南和南为主,向东北方向的扩散距离最远,影响范围可达俄罗斯中部地区,西南方向扩散路径高度和距离较近,主要影响乌兹别克斯坦和土库曼斯坦,但发生比例相对较高,塔克拉玛干沙漠地区起尘后大部分沙尘颗粒仍沉降在尘源区附近,向东部地区扩散的沙尘气溶胶,主要影响中国青海、甘肃、宁夏、陕西等地区。
其他语种文摘 Central Asia is located in arid and semi-arid regions. This region contributes to dust aerosols because of desertification and land degradation. In order to better understand temporal variability, vertical distribution, and potential diffusion characteristics of salt dust and desert dust in Central Asia, we studied the intranasal changes in dust aerosol from the Aral Sea basin and Taklimakan Desert using MODIS aerosol data and CALIOP data, and analyzed its potential seasonal diffusion from 2005 to 2015 using the HYSPLIT model. Results showed that AOD of this region was high in spring and summer and low in autumn and winter. Over the 14 years, it showed an increasing trend. The mean values of the four seasons were: spring (0.412) >summer (0.258) >autumn (0.167) ≈ winter (0.159). The annual AOD high value areas were mainly concentrated in the Tarim Basin in southern Xinjiang and surrounding areas of Aral Sea. The annual average value of AOD in Aral Sea was 0.278, and annual amplification was 3.175%. It is indicated that the degradation of the Aral Sea had a direct impact on the AOD surrounding area. The annual average value of AOD in the Tarim Basin was 0.421,and annual amplification was 0.062%, which was mainly affected by temperature and wind speed, and the dominant factors were slightly different in different seasons. Dust aerosols were mainly concentrated in a range of 0-2 km. Aerosol depolarization ratio range in the desert (10%-45%) was slightly greater than that in the Aral Sea (15%-30%) and the aerosol color ratio range in the Aral Sea (0.3-0.8) was less than that of the desert (0.5-0.9). There were two high-frequency color ratios of 0.5 and 0.3 from the dust zone over 0-2 km and 4-6 km of salt dust. Compared to dust aerosols, salt dust aerosols had smaller irregularities and particle size, and higher impact of height range. As for the Aral Sea region, the potential distance and height of air parcel trajectories to the northeast were greater than to the west and south, whereas the air parcel trajectory proportion of the former was lower than that of the latter, which mainly affect Uzbekistan and Turkmenistan. Most of the dust in the Taklimakan Desert is still settling in the vicinity of the dust source region. The potential diffusion path to the eastern regions has impact on Qinghai, Gansu, Ningxia, Shaanxi and other regions.
来源 地理学报 ,2017,72(3):507-520 【核心库】
DOI 10.11821/dlxb201603011
关键词 气溶胶 ; 时空分布 ; 潜在扩散路径 ; 中亚
地址

新疆大学资源与环境科学学院, 绿洲生态教育部重点实验室, 乌鲁木齐, 830046

语种 中文
文献类型 研究性论文
ISSN 0375-5444
基金 新疆自治区重点实验室专项基金 ;  新疆自治区科技支疆项目 ;  国家自然科学基金项目 ;  新疆自治区专家顾问团决策研究与咨询项目 ;  新疆大学优秀博士研究生创新项目
文献收藏号 CSCD:5946229

参考文献 共 34 共2页

1.  Baltensperger U. Chemical analysis of atmospheric aerosols. Analytical & Bioanalytical Chemistry,2008,390(1):277-280 被引 2    
2.  刘秀位. 大气气溶胶增加对作物的影响研究进展. 生态学报,2016,36(7):1-7 被引 2    
3.  Haywood J. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics,2000,38(4):513-543 被引 86    
4.  刘爱霞. 中国及中亚地区荒漠化遥感监测研究,2004 被引 10    
5.  罗云峰. 30年来我国大气气溶胶光学厚度平均分布特征分析. 大气科学,2002,26(6):721-730 被引 63    
6.  许潇锋. 中国地区气溶胶光学特性研究,2008 被引 1    
7.  李霞. 1980-2007年新疆地区能见度的变化特征及其影响因子研究. 沙漠与绿洲气象,2012,6(3):14-20 被引 7    
8.  李娟. 中亚地区沙尘气溶胶的理化特性、来源、长途传输及其对全球变化的可能影响,2009 被引 13    
9.  Ge Y. Temporal variability and potential diffusion characteristics of dust aerosol originating from the Aral Sea basin, Central Asia. Water Air & Soil Pollution,2016,227(2):1-12 被引 1    
10.  Micklin P P. Desiccation of the Aral Sea: A water management disaster in the Soviet Union. Science,1988,241(4870):1170-1176 被引 31    
11.  Micklin P. The Aral Sea disaster. Annual Review of Earth & Planetary Sciences,2007,35(1):47-72 被引 28    
12.  吴敬禄. 中亚干旱区咸海的湖面变化及其环境效应. 干旱区地理,2009,32(3):418-422 被引 27    
13.  王四海. 金色的土库曼斯坦,2011 被引 4    
14.  Kaufman Y J. Operational remote sensing of troposphereic aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer. Journal of Geophysical Research Atmospheres,1997,102067(D14):17051-17067 被引 194    
15.  沈仙霞. 基于CALIPSO卫星的区域气溶胶特性研究,2014 被引 13    
16.  Weng F. Improvement of the use of MSG and GOES data in the NCEP GDAS. Proceedings of SPIE: The International Society for Optical Engineering,2010,7811(1):181-197 被引 1    
17.  刘灿. 基于MODIS数据的西南地区气溶胶光学厚度时空变化特征分析. 西南大学学报(自然科学版),2014,36(5):1-8 被引 4    
18.  王苑. 基于气溶胶光学特性垂直分布的一次浮尘过程分析. 环境科学,2014,35(3):830-838 被引 13    
19.  王芳. 基于气流轨迹聚类的大气污染输送影响. 环境科学研究,2009,22(6):637-642 被引 63    
20.  王茜. 利用轨迹模式研究上海大气污染的输送来源. 环境科学研究,2013,26(4):357-363 被引 74    
引证文献 17

1 胡俊 基于MODIS_C006的乌鲁木齐10年气溶胶光学厚度变化特征 环境科学,2018,39(8):3563-3570
被引 10

2 陈文倩 新疆干旱区季节性积雪中黑碳气溶胶研究 中国环境科学,2019,39(1):83-91
被引 7

显示所有17篇文献

论文科学数据集

1. 青藏高原不同站点气溶胶颗粒PM2.5浓度数据集(2019)

2. 泛第三极地区气溶胶同化数据集(2015-2017)

3. 青藏高原气溶胶数据集(2006-2019)

数据来源:
国家青藏高原科学数据中心

1. HTDMA和HR-ToF-AMS测定北京2016年冬与2017年夏不同粒径粒子吸湿增长因子和化学组分数据集

2. 重庆长寿化工园区观测气溶胶激光雷达一级数据(2018.06-2019.01)

3. 四川乐山市五通桥区工业园区观测气溶胶激光雷达一级数据(2018.08-2018.12)

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号