帮助 关于我们

返回检索结果

不同应力状态下孔隙结构特征对土-水特征曲线的影响
Influence of pore structure characteristics on soil-water characteristic curves under different stress states

查看参考文献30篇

陈宇龙 1   黄栋 2 *  
文摘 针对传统土-水特征曲线测试仪无法实现荷载作用的不足,研制吸力控制式三轴试验装置,开展不同应力状态作用下土-水特征曲线试验,讨论应力状态对孔隙特征的作用. 结果表明,固结压力和基质吸力均能使土体产生不可逆的收缩变形. 固结压力越大,土颗粒就越紧密,孔隙比越小,孔隙尺寸和数量越小,渗透性越差,表现出较好的持水能力,空气难以进入土体,土体排水困难,导致进气值增大和减湿率减小. 土-水特征曲线与孔隙结构特征的关系紧密,与应力状态无直接关系.固结压力对土-水特征曲线的影响是通过改变孔隙结构特征来体现的. 孔隙结构特征相近时,应力状态对其土-水特征曲线不会产生影响.
其他语种文摘 Since traditional instruments cannot apply stress in soil-water characteristic curve tests,we develop a suction controlled triaxial apparatus,by which soil-water characteristic curve tests are performed under different stress states. Further,the influence of stress state on the pore characteristics is discussed. The results show that both consolidation pressure and matrix suction can lead to the irreversible contraction deformation of soil. The soil under a larger consolidation pressure has a denser structure and a less void,leading to a smaller pore size and quantity. So it results in a worse permeability. Accordingly,it shows a better water retentivity. Air can hardly enter and water can hardly drain out,which give rise to a larger air entry value and a smaller slope of the soil-water characteristic curve. The soil-water characteristic curve of a compacted soil mainly depends upon current void ratio,not directly upon stress state. The influence of consolidation pressure on the soil-water characteristic curve is embodied in pore distribution properties. For similar pore distribution properties,the soil-water characteristic curve should be similar regardless of stress state. A larger consolidation pressure causes a less hysteresis.
来源 工程科学学报 ,2017,39(1):147-154 【核心库】
DOI 10.13374/j.issn2095-9389.2017.01.019
关键词 土-水特征曲线 ; 应力状态 ; 孔隙结构 ; 孔隙比 ; 滞后
地址

1. 东京大学土木工程系, 日本, 东京, 113-8656  

2. 中国科学院山地灾害与地表过程重点实验室, 中国科学院山地灾害与地表过程重点实验室, 成都, 610041

语种 中文
文献类型 研究性论文
ISSN 2095-9389
学科 建筑科学
基金 国家自然科学基金资助项目
文献收藏号 CSCD:5926843

参考文献 共 30 共2页

1.  Fredlund D G. The relationship of the unsaturated soil shear to the soil-water characteristic curve. Can Geotech J,1996,33(3):440 被引 89    
2.  Oberg A L. Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve. Geotech Test J,1997,20(1):40 被引 19    
3.  Huang S Y. Development and verification of a coefficient of permeability function for a deformable unsaturated soil. Can Geotech J,1998,35(3):411 被引 18    
4.  Lim P C. The influence of degree of saturation on the coefficient of aqueous diffusion. Can Geotech J,1998,35(5):811 被引 3    
5.  Gallage C. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found,2013,53(3):417 被引 9    
6.  Ng C W W. Influence of stress state on soil-water characteristics and slope stability. J Geotech Geoenviron Eng,2000,126(2):157 被引 42    
7.  谈云志. 固结作用下粉土的持水性能与细观机制研究. 岩土力学,2013,34(11):3077 被引 4    
8.  Tavakoli Dastjerdi M H. Effect of confining stress on soil water retention curve and its impact on the shear strength of unsaturated soils. Vadose Zone J,2014,13(5):1 被引 9    
9.  Irfan M. Modified triaxial apparatus for determination of elastic wave velocities during infiltration tests on unsaturated soils. KSCE J Civ Eng,2016,20(1):197 被引 2    
10.  Pham H Q. A Volume-Mass Constitutive Model for Unsaturated Soils[Dissertation],2005 被引 1    
11.  陈仲颐. 土力学,1994 被引 204    
12.  胡孝彭. 应力状态对土-水特征曲线的影响规律. 河海大学学报(自然科学版),2013,41(2):150 被引 4    
13.  Miller C J. Impact of soil type and compaction conditions on soil water characteristic. J Geotech Geoenviron Eng,2002,128(9):733 被引 29    
14.  Hu R. A water retention curve and unsaturated hydraulic conductivity model for deformable soils:consideration of the change in pore-size distribution. Geotechnique,2013,63(16):1389 被引 16    
15.  Zhou A N. Modelling the effect of initial density on soil-water characteristic curves. Geotechnique,2012,62(8):669 被引 23    
16.  Fleureau J M. Aspects of the behaviour of compacted clayey soils on drying and wetting paths. Can Geotech J,2002,39(6):1341 被引 5    
17.  沈珠江. 广义吸力和非饱和土的统一变形理论. 岩土工程学报,1996,18(2):1 被引 87    
18.  Bolt G E. Physico-chemical analysis of the compressibility of pure clays. Geotechnique,1956,6(2):86 被引 37    
19.  张俊然. 吸力历史对非饱和土力学性质的影响. 岩土力学,2013,34(10):2810 被引 10    
20.  戚国庆. 基质吸力变化引起的体积应变研究. 工程地质学报,2015,23(3):491 被引 4    
引证文献 5

1 陈宇龙 非饱和亲水性和疏水性砂的剪切行为 清华大学学报. 自然科学版,2019,59(12):961-966
被引 1

2 陈勇 湿–载–热对粉质黏土持水性能的影响特征及预测模型 工程科学与技术,2021,53(4):45-52
被引 2

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号