帮助 关于我们

返回检索结果

紫色土小流域浅层井水中胶体颗粒的季节变化
Seasonal Variation of Colloid Particles in the Shallow Well Water of a Small Watershed of Purple Soil

查看参考文献25篇

张维 1   唐翔宇 2 *   鲜青松 2  
文摘 胶体是多种污染物迁移进入地下水的主要载体. 为探究地下水中胶体颗粒的长期动态变化及影响因素,对川中丘陵区紫色土小流域浅层井中胶体颗粒浓度及井水理化性质进行了1 a的原位观测. 结果表明:浅层井水中胶体颗粒含量存在较强的季节变异(CV>0.5),胶体颗粒质量浓度峰值可达到14.68 mg·L~(-1)(相应的数量浓度为1.34×10~9 L~(-1)),出现在非雨季,由人为取水扰动所致. 雨季中前期大雨产流的物理扰动能有效增加井水中胶体颗粒浓度,后期暴雨的促进作用不明显. 井水化学性质(EC、 Ca~(2+)、 Mg~(2+)、 DOC)是影响胶体颗粒浓度动态及存在形态最重要的因素. 该地区作为饮用水源的浅层井在雨季中前期可能受到因增加的胶体颗粒输入而辅助迁移的农化物质(如农药、 P等)对井水质量安全的威胁,建议加强该时段内降雨后井水中胶体及井水理化性质的监测.
其他语种文摘 Colloids are the major carriers of various contaminants during the downward transport into groundwater. To explore the long-term dynamics of colloid in the groundwater and its influencing factors, a one-year monitoring of colloid concentration and water physicochemical parameters was carried out in the shallow wells in a purple soil dominated watershed in the hilly region of central Sichuan. The results indicated that colloid concentrations within a year had a strong seasonal variation with the coefficient of variation being larger than 0.5. The maximum of colloid mass concentration could reach as high as 14.68 mg·L~(-1) (the corresponding number concentration being 1.34×10~9 L~(-1)), which occurred in the non-rainy season and was caused by the physical perturbations from water taken. Physical perturbations of rainfall led to the distinct peaks of colloid concentrations in the well water at the early stages of rainy season while it did not occur at the end of the rainy season even upon heavy storm. Water chemistries (EC, Ca~(2+), Mg~(2+), DOC) showed the dominant role in determining colloid concentrations and status in the well. The facilitated transport of contaminants (i.e. pesticides and heavy metals) due to the increased colloids in the shallow well water at the early stages of rainy season would potentially pose a great threat to the drinking water safety in the study area. Therefore, it is strongly suggested to increase the monitoring frequencies in terms of colloid concentrations and well water physicochemical parameters following the large rainfall events during this period.
来源 环境科学 ,2017,38(1):87-94 【核心库】
DOI 10.13227/j.hjkx.201607070
关键词 胶体 ; 地下水 ; 颗粒粒径分布 ; 紫色土 ; 季节变化
地址

1. 重庆工商大学旅游与国土资源学院, 中国科学院山地表生过程与生态调控重点实验室, 重庆, 400067  

2. 中国科学院水利部成都山地灾害与环境研究所, 中国科学院山地表生过程与生态调控重点实验室, 成都, 610041

语种 中文
文献类型 研究性论文
ISSN 0250-3301
学科 环境污染及其防治
基金 四川省"百人计划"项目 ;  国家自然科学基金项目
文献收藏号 CSCD:5896369

参考文献 共 25 共2页

1.  Molnar I L. Predicting colloid transport through saturated porous media: a critical review. Water Resources Research,2015,51(9):6804-6845 被引 13    
2.  Nie M H. Environmental estrogens in a drinking water reservoir area in Shanghai: occurrence, colloidal contribution and risk assessment. Science of the Total Environment,2014,487:785-791 被引 5    
3.  李海明. 滨海含水介质胶体对垃圾渗滤液氨氮的吸附特征. 水科学进展,2008,19(3):339-344 被引 5    
4.  马杰. 垃圾污染场地浅层地下水中铁锰时空变异的胶体效应. 环境科学,2011,32(3):908-912 被引 3    
5.  Zhang W. A Review of Colloid Transport in Fractured Rocks. Journal of Mountain Science,2012,9(6):770-787 被引 12    
6.  顾丽军. 长江口滨岸及近海水体中胶体的分布和理化性质研究. 环境科学,2013,34(11):4195-4203 被引 6    
7.  Gooddy D C. The significance of colloids in the transport of pesticides through chalk. Science of the Total Environment,2007,385(1/3):262-271 被引 3    
8.  McKay L D. Field-scale migration of colloidal tracers in a fractured shale saprolite. Ground Water,2000,38(1):139-147 被引 5    
9.  Kuno Y. Natural colloids in groundwater from a bentonite mine-Correlation between colloid generation and groundwater chemistry-. Materials Research Society Symposium Proceedings,2002,713:841-848 被引 1    
10.  Pronk M. Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water,2009,47(3):361-369 被引 3    
11.  Cizdziel J V. Chemical and colloidal analyses of natural seep water collected from the exploratory studies facility inside Yucca Mountain, Nevada, USA. Environmental Geochemistry and Health,2008,30(1):31-44 被引 1    
12.  Rani R D. Stability assessment and characterization of colloids in coastal groundwater aquifer system at Kalpakkam. Environmental Earth Sciences,2011,62(2):233-243 被引 3    
13.  Zhang W. A coupled field study of subsurface fracture flow and colloid transport. Journal of Hydrology,2015,524:476-488 被引 10    
14.  Zhao P. Tracing water flow from sloping farmland to streams using oxygen-18 isotope to study a small agricultural catchment in southwest China. Soil and Tillage Research,2013,134:180-194 被引 11    
15.  Degueldre C. Colloids in water from a subsurface fracture in granitic rock, Grimsel Test Site, Switzerland. Geochimica et Cosmochimica Acta,1989,53(3):603-610 被引 3    
16.  van den Bogaert R. To which extent do rain interruption periods affect colloid retention in macroporous soils. Geoderma,2016,275:40-47 被引 1    
17.  Mohanty S K. Mobilization of microspheres from a fractured soil during intermittent infiltration events. Vadose Zone Journal,2015,14(1) 被引 3    
18.  孙小静. 持续水动力作用下湖泊底泥胶体态氮、磷的释放. 环境科学,2007,28(6):1223-1229 被引 51    
19.  Pronk M. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environmental Science & Technology,2007,41(24):8400-8405 被引 5    
20.  Wu L. Colloid filtration in surface dense vegetation: experimental results and theoretical predictions. Environmental Science & Technology,2014,48(7):3883-3890 被引 3    
引证文献 2

1 张维 紫色土坡耕地裂隙潜流的产流机理与胶体颗粒迁移 环境科学研究,2017,30(12):1919-1926
被引 2

2 王宏 耕作方式和土层厚度深度对紫色土胶体迁移的影响 灌溉排水学报,2020,39(3):25-34
被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号