帮助 关于我们

返回检索结果

基于AFM的临床原代细胞机械特性测量研究进展
Progress in measuring the mechanical properties of clinical primary cells using atomic force microscopy

查看参考文献69篇

李密   刘连庆 *   席宁 *   王越超  
文摘 原子力显微镜(AFM)的出现为免标记研究近生理环境下单个活体状态细胞的机械特性提供了新的技术手段.自20世纪90年代中期以来,研究人员在利用AFM测量细胞机械特性方面开展了大量研究,结果表明细胞机械特性是一个新的免标记生物标志物(可有效指示细胞生理状态的变化),加深了人们对癌症等重大疾病的认识,促进了细胞生物力学的发展.然而,现有的AFM单细胞机械特性研究主要集中在体外培养的细胞系,由于体内体外环境的巨大差异导致测量结果难以完全反映人体内的真实情况.特别是在精准医疗时代,需要对来自患者的原代细胞进行测试分析以实现疾病的个性化诊治.因此发展直接对临床患者原代细胞(癌变细胞和正常细胞)机械特性进行离体检测的方法具有潜在的转化医学实际意义.本文结合作者在基于AFM的淋巴瘤病例细胞机械特性测量与表征方面的研究工作,介绍了AFM测量细胞机械特性的原理与方法,总结了近年来AFM在检测原代细胞机械特性方面的进展,并对其面临的问题和挑战进行了讨论.
其他语种文摘 The advent of atomic force microscopy (AFM) provides a novel instrument for label-free measuring the mechanical properties of single living cells under near-physiological conditions. Since the mid-1990s, researchers have used AFM to investigate the mechanical properties of cells with impressive results and demonstrated that cell mechanics is a new label-free biomarker which can effectively indicate the changes of cellular physiological states, improving our understanding of cancers and simultaneously promoting the development of cell biomechanics. However, current AFM single-cell mechanical assays are commonly performed on cell lines cultured in vitro. Due to the huge difference between in vitro and in vivo environments, the results acquired from cell lines cannot completely reflect the real situations in the body. Especially in the era of precision medicine, we need to test and analyze the primary cells from patients to achieve personalized diagnosis and treatment. Hence, developing methods that can directly detect the mechanical properties of primary cells (cancerous cells and normal cells) from clinical patients is of potential significance in translational medicine. In this paper, based on the authors’ own research in applying AFM to measure and characterize the mechanical properties of lymphoma patient cells, the principle and method of measuring the mechanical properties of cells by AFM is presented, then the recent progress in measuring the mechanical properties of primary cells by AFM is summarized, and finally the challenges are discussed.
来源 中国科学. 生命科学 ,2016,46(12):1370-1381 【核心库】
DOI 10.1360/N052016-00200
关键词 原子力显微镜 ; 原代细胞 ; 机械特性 ; 弹性 ; 黏弹性
地址

中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳, 110016

语种 中文
文献类型 综述型
ISSN 1674-7232
基金 国家自然科学基金 ;  中国科学院、国家外国专家局创新团队国际合作伙伴计划资助
文献收藏号 CSCD:5886604

参考文献 共 69 共4页

1.  Binnig G. Atomic force microscope. Phys Rev Lett,1986,56:930-933 被引 458    
2.  Foster C M. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization. Langmuir,2013,29:8377-8384 被引 1    
3.  Ahmad M R. Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM. IEEE Transon Nanobiosci,2010,9:12-23 被引 3    
4.  Li M. Progress of AFM single-cell and single-molecule morphology imaging. Chin Sci Bull,2013,58:3177-3182 被引 4    
5.  Neuman K C. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Meth,2008,5:491-505 被引 93    
6.  Hecht E. Combined atomic force microscopy-fluorescence microscopy: analyzing exocytosis in alveolar type II cells. Anal Chem,2012,84:5716-5722 被引 4    
7.  Eghiaian F. Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J,2015,108:1330-1340 被引 7    
8.  Cai M. Direct evidence of lipid rafts by in situ atomic force microscopy. Small,2012,8:1243-1250 被引 4    
9.  Schillers H. PeakForce Tapping resolves individual microvilli on living cells. J Mol Recognit,2016,29:95-101 被引 11    
10.  Chen L. Time-series investigation of fused vesicles in microvessel endothelial cells with atomic force microscopy. Microsc Res Tech,2010,73:152-159 被引 2    
11.  Stadler B. Time-lapse imaging of in vitro myogenesis using atomic force microscopy. J Microsc,2010,237:63-69 被引 2    
12.  El-Kirat-Chatel S. Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano,2012,6:10792-10799 被引 5    
13.  Lamprecht C. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin on Drug Deliver,2014,11:1237-1253 被引 3    
14.  Kirmizis D. Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomed,2010,5:137-145 被引 11    
15.  Engler A J. Matrix elasticity directs stem cell lineage specification. Cell,2006,126:677-689 被引 236    
16.  Medalsy I D. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano,2013,7:2642-2650 被引 4    
17.  Kasas S. Mechanical properties of biological specimens explored by atomic force microscopy. J Phys D-Appl Phys,2013,46:133001 被引 14    
18.  Lekka M. Discrimination between normal and cancerous cells using AFM. BionanoSci,2016,6:65-80 被引 11    
19.  Cross S E. Nanomechanical analysis of cells from cancer patients. Nat Nanotech,2007,2:780-783 被引 74    
20.  Xu W. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE,2012,7:e46609 被引 18    
引证文献 3

1 李密 基于AFM的细胞弹性及黏弹性研究 中国科学. 生命科学,2017,47(6):629-639
被引 2

2 李密 基于多参数成像AFM的细胞及分子力学特性探测研究进展 生物化学与生物物理进展,2018,45(11):1106-1114
被引 4

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号