帮助 关于我们

返回检索结果

Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field
Beta C钛合金在β相区的热变形行为及组织演化

查看参考文献36篇

文摘 The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression tests on a Gleeble-3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained and a processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stress increases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activation energy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit a dynamic recrystallization domain in the temperature range of 900-1000 °C and strain rate range of 0.1-1 s~(-1). An instability region exists when the strain rate is higher than 1.7 s~(-1). The microstructure of beta C titanium alloy can be optimized by proper heat treatments after the deformation in the dynamic recrystallization domain.
其他语种文摘 利用Gleeble-3800热模拟试验机对beta C钛合金进行等温压缩试验,研究其在β相区的热变形行为。得到了描述热变形行为的本构方程,获得了真应变为0.7时的加工图。采用光学显微镜、扫描电子显微镜和电子背散射技术对变形显微组织进行表征。结果表明:流变应力随着应变速率加快而增大,随着试验温度的升高而减小。计算得到的表观激活能为167 kJ/mol,接近β钛的自扩散激活能。加工图和显微组织观察表明在温度为900~1000 °C和变形速率为0.1~1 s~(-1)的区间存在一个动态再结晶区。加工图显示,当变形速率大于1.7 s~(-1)时,beta C钛合金发生不稳定变形。Beta C钛合金在动态再结晶区变形后,经合适的热处理,显微组织可以被优化。
来源 Transactions of Nonferrous Metals Society of China ,2016,26(11):2874-2882 【核心库】
DOI 10.1016/S1003-6326(16)64416-3
关键词 titanium alloy ; hot deformation ; dynamic recrystallization ; processing map
地址

Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016

语种 英文
文献类型 研究性论文
ISSN 1003-6326
学科 金属学与金属工艺
文献收藏号 CSCD:5874615

参考文献 共 36 共2页

1.  Schmidt P. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti 38-644. Metallurgical and Materials Transactions A,2011,42(9):2652-2667 被引 10    
2.  El-Chaikh A. Fatigue properties of duplex-aged Ti 38-644 metastable beta titanium alloy. Procedia Engineering,2010,2(1):1973-1982 被引 1    
3.  Yamashita Y. Manufacturing technology and application of titanium alloy wire rod to deep-sea cable. Nippon Steel Technical Report,1994,62:52-56 被引 1    
4.  Yu K O. Single-melt beta C for spring and fastener applications. Journal of Materials Engineering and Performance,2005,14(6):697-702 被引 3    
5.  Nyakana S L. Quick reference guide for β titanium alloys in the oos. Journal of Materials Engineering and Performance,2005,14(6):799-811 被引 45    
6.  Somerday B P. Effect of strength on environment-assisted cracking of Ti-8V-6Cr-4Mo-4Zr-3Al in aqueous NaCl. Part 1: Age hardening vs. work hardening. Materials Science and Engineering A,1998,254(1):166-178 被引 1    
7.  Gaudett M A. Part I-The effects of pre-dissolved hydrogen on cleavage and grain boundary fracture initiation in metastable beta Ti-3Al-8V-6Cr-4Mo-4Zr. Metallurgical and Materials Transactions A,1999,30(1):65-79 被引 1    
8.  Rhodes C G. The influence of microstructure on mechanical properties in Ti-3AI-8V-6Cr-4Mo-4Zr (Beta-C). Metallurgical Transactions A,1977,8(11):1749-1761 被引 6    
9.  Choe B H. The ordering behavior of supersaturated metastable phases in β-Ti alloys. Metals and Materials International,2001,7(6):551-556 被引 1    
10.  Salam A. Superplasticity and associated activation energy in Ti-3Al-8V-6Cr-4Mo-4Zr alloy. Journal of Materials Science,2005,40(20):5475-5482 被引 4    
11.  -Ukaszek-So-Ek A. The analysis of the hot deformation behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness. Materials & Design,2014,65:165-173 被引 1    
12.  Prasad Y V R K. Modelling of dynamic materials behavior in hot deformation: Forging of Ti-6242. Metallurgical Transactions A,1984,15:1883-1892 被引 381    
13.  Prasad Y V R K. Hot working guide: A compendium of processing maps 2~(nd) ed,2015:2-11 被引 1    
14.  Xu Xin. Effect of strain on hot deformation behavior and microstructure of TB9 titanium alloy. The Chinese Journal of Nonferrous Metals. (in Chinese),2013,23(S):s566-s570 被引 1    
15.  Weiss I. Thermomechanical processing of beta titanium alloys-An overview. Materials Science and Engineering A,1998,243(1):46-65 被引 114    
16.  Luo Jiao. Deformation behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with two initial microstructures during hot working. Transactions of Nonferrous Metals Society of China,2016,26(2):414-422 被引 10    
17.  Srinivasan M. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map. Materials & Design,2013,47(9):449-455 被引 8    
18.  Gall S. Hot working behavior of AZ31 and ME21 magnesium alloys. Journal of Materials Science,2013,48(1):473-480 被引 5    
19.  Li Juqiang. Characterization of hot deformation behavior of extruded ZK60 magnesium alloy using 3D processing maps. Materials & Design,2014,56:889-897 被引 14    
20.  Lu Yanling. Hot deformation behavior of Hastelly C276 superalloy. Transactions of Nonferrous Metals Society of China,2012,22(S1):s84-s88 被引 9    
引证文献 18

1 费跃 冷却速度对TB17合金组织及硬度的影响 稀有金属,2017,41(9):1056-1060
被引 1

2 陈强 锻件组织不均匀性对新型近β 钛合金组织与力学性能的影响 中国有色金属学报,2018,28(1):87-96
被引 5

显示所有18篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号