帮助 关于我们

返回检索结果

纳米碳/氢氧化锂复合材料的低温化学蓄热性能研究
The Performance Investigation on Nano Carbon-Modified Lithium Hydroxide for Low-temperature Chemical Heat Storage

查看参考文献22篇

文摘 本文将氧化石墨烯(GO)、羧基化多壁碳纳米管(c-MWCNTs)等纳米碳材料通过水热的方法与氢氧化锂进行反应,得到碳基氢氧化锂化学蓄热复合材料.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射分析仪(XRD)以及热重/同步差热分析仪(TGA-DSC)等表征手段获取了复合材料的表观形貌、负载组分、蓄热密度等关键热物性参数.研究表明纳米碳材料的复合使LIOH的单体水合速率大幅度提升,与此同时蓄热密度有着不同程度地增大,其中以GO/LiOH复合材料的化学蓄放热性能最为突出。除此之外,材料整体的导热系数也由于GO的复合有着显著的提高.本研究拓展了碳材料在储能领域的应用范围,针对纳米碳化学蓄热复合材料提供了理性的设计方法。
其他语种文摘 LiOH·H_2O nanoparticles supported on grapheneoxide (GO) and carboxylic multi wall-carbon nano tubes (c-MWCNTs) were facilely synthesized by a hydrothermal process. The pivotal thermophysical property of nanocomposites was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and thermogravimetry-differential thermal analysis (TGA-DSC). The as-prepared sample of LiOH/nano carbonexhibited higher rate of heat release than pure lithium hydroxide and showed a greatly enhanced thermal energy storage density, especially for LiOH/GO. In addition,the introduction of GO also improved the thermal conductivity of composites. The research expandedcarbon materials' scope of application in the thermal storagefield and proposed the new concept ofdesigning rationally nano carbon-based composite materials for low-temperature chemical heat storage.
来源 工程热物理学报 ,2016,37(12):2512-2516 【核心库】
关键词 氢氧化锂 ; 氧化石墨烯 ; 复合材料 ; 化学蓄热 ; 纳米碳
地址

中国科学院广州能源研究所, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 0253-231X
学科 能源与动力工程
基金 国家自然科学基金资助项目
文献收藏号 CSCD:5869121

参考文献 共 22 共2页

1.  Gil A. State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1-Concepts, Materials and Model-lization. Renewable and Sustainable Energy Reviews,2010,14(1):31-55 被引 85    
2.  Medrano M. State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part 2-Case Studies. Renewable and Sustainable Energy Reviews,2010,14(1):56-72 被引 85    
3.  Pardo P. A Review on High Temperature Thermochemical Heat Energy Storage. Renewable and Sustainable Energy Reviews,2014,32:591-610 被引 34    
4.  Whiting G. Heats of Water Sorption Studies on Zeolite-MgSO_4 Composites as Potential Thermochemical Heat Storage Materials. Solar Energy Materials and Solar Cells,2013,112:112-119 被引 7    
5.  Ovoshchnikov D S. Water Sorption by the Calcium Chloride/silica Gel Composite: The Accelerating Effect of the Salt Solution Present in the Pores. Kinetics and Catalysis,2011,52(4):620-628 被引 2    
6.  Schaube F. De-and Rehydration of Ca(OH)2 in a Reactor With Direct Heat Transfer for Thermo-Chemical Heat Storage. Part a: Experimental Results. Chemical Engineering Research and Design,2013,91(5):856-864 被引 14    
7.  Schaube F. De-and Rehydration of Ca(OH)2 in a Reactor With Direct Heat Transfer for Thermo-Chemical Heat Storage. Part b: Validation of Model. Chemical Engineering Research and Design,2013,91(5):865-873 被引 12    
8.  Felderhoff M. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications. International Journal of Molecular Sciences,2009,10(1):325-344 被引 13    
9.  Li T. Performance Analysis of an Integrated Energy Storage and Energy Upgrade Thermochemical Solid-gas Sorption System for Seasonal Storage of Solar Thermal Energy. Energy,2013,50:454-467 被引 4    
10.  Li T. A Target-Oriented Solid-gas Thermochemical Sorption Heat Transformer for Integrated Energy Storage and Energy Upgrade. AIChE Journal,2013,59(4):1334-1347 被引 2    
11.  Posern K. Calorimetric Studies of Thermochemical Heat Storage Materials Based on Mixtures of MgSO_4 and MgCl_2. Thermochimica Acta,2010,502(1/2):73-76 被引 12    
12.  Tae Kim S. Reactivity Enhancement of Chemical Materials Used in Packed bed Reactor of Chemical Heat ump. Progress in Nuclear Energy,2011,53(7):1027-1033 被引 5    
13.  J H. Synthetizing the Expanded Graphite Based CaXzZy(OH)2(x+y): A Nanocomposite Solar Chemical Storage Material by Coprecipitation. Chin Sci Bull,2014,59:267-272 被引 1    
14.  Zajaczkowski B. A New Type of Sorption Composite for Chemical Heat Pump and Refrigeration Systems. Applied Thermal Engineering,2010,30(11/12):1455-1460 被引 1    
15.  Wang C. Graphene Oxide Stabilized Polyethylene Glycol for Heat Storage. Physical Chemistry Chemical Physics,2012,14(38):13233-13238 被引 4    
16.  Mehrali M. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy,2013,58:628-634 被引 5    
17.  Qi G Q. Polyethylene Glycol Based Shape-Stabilized Phase Change Material for Thermal Energy Storage With Ultra-low Content of Graphene Oxide. Solar Energy Materials and Solar Cells,2014,123:171-177 被引 12    
18.  Zhang Y. Encapsulated Phase Change Materials Stabilized by odified Graphene Oxide. Journal of Materials Chemistry A,2014,2(15):5304-5314 被引 8    
19.  Lee J H. Reaction Characteristics of Various Gypsum as Chemical Heat Pump Materials. Applied Thermal Engineering,2013,50(2):1557-1563 被引 1    
20.  Kovtyukhova N I. Layer-by-Layer Assembly of Ultrathin Composite Films From Micron-sized Graphite Oxide Sheets and Polycations. Chemistry of Materials,1999,11(3):771-778 被引 177    
引证文献 3

1 郝茂森 水合盐热化学储热材料的研究进展 储能科学与技术,2020,9(3):791-796
被引 3

2 杨效田 石蜡对无机复合相变储热体系的改性研究 复合材料学报,2022,39(5):2421-2429
被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号