帮助 关于我们

返回检索结果

脊柱微创手术机器人速度场控制方法
Velocity Field Control Method of a Minimally Invasive Spine Surgical Robot

查看参考文献20篇

宋国立 1 *   韩冰 2   赵忆文 1   韩建达 1   王争 1   杜惠斌 1  
文摘 在脊柱微创手术中医生徒手置钉的失误率较高,虽然机器人可以显著降低置钉的失误率,但是,手术环境的复杂性和不确定性,以及手术安全需求制约了机器人自动完成手术.本文通过建立手术空间速度场,设计速度场控制器,建立机器人运动学和动力学模型,完成机器人椎弓根螺钉自动植入的仿真和实验.相对于传统的时间轨迹控制,仿真实验验证了速度场控制方法在椎弓根螺钉自动植入过程中既能在扰动条件下保证手术轨迹的精确性又能避免对神经根的损伤.通过实验验证了速度场控制方法的可行性.
其他语种文摘 The failure rate of implanting screws only by surgeon hands is high in minimally invasive spine surgery. It canbe reduced significantly by adopting robots, however, the robot is restricted when completing the operation automaticallybecause of the complexity and uncertainty of the surgical environment, as well as the safety requirements of the operation.By establishing the surgical space velocity field and designing velocity field controller, the kinematics and dynamics modelsof robot are developed to realize the simulation and experiment of implanting pedicle screws by the robot automatically.Compared with traditional time trajectory control, the advantages of velocity field control method in the process of implantingpedicle screw automatically are verified by the simulation test, in which the accuracy of operation trajectory is guaranteed andthe damage to the nerve root is avoided under disturbance conditions. The experiment proves the feasibility of the velocityfield control method.
来源 机器人 ,2016,38(5):603-611 【核心库】
DOI 10.13973/j.cnki.robot.2016.0603
关键词 脊柱手术 ; 手术机器人 ; 轨迹规划 ; 速度场控制
地址

1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016  

2. 东北大学, 辽宁, 沈阳, 110819

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:5834052

参考文献 共 20 共1页

1.  Carbone J J. Fluoroscopically assisted pedicle screw fixation for thoracic and thoracolumbar injuries. Spine,2003,28(1):91-97 被引 17    
2.  Bertelsen A. A review of surgical robots for spinal interventions. International Journal of Medical Robotics and Computer Assisted Surgery,2013,9(4):407-422 被引 12    
3.  Schatlo B. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine:A matched cohort comparison. Journal of Neurosurgery Spine,2014,20(6):636-643 被引 14    
4.  Lefranc M. Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement:Coupling the Rosa?R Spine robot with intraoperative flat-panel CT guidance - a cadaver study. Journal of Robotic Surgery,2015,9(4):1-8 被引 7    
5.  Ringel F. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws:A prospective randomized comparison to conventional freehand screw implantation. Spine,2012,37(8):E496-E501 被引 23    
6.  Belmont P J. Accuracy of thoracic pedicle screws in patients with and without coronal plane spinal deformities. Spine,2002,27(14):1558-1566 被引 7    
7.  Li P Y. Passive velocity field control of mechanical manipulators. IEEE Transactions on Robotics and Automation,2002,15(4):751-763 被引 1    
8.  付宜利. 微创手术机器人力检测与力反馈技术研究现状. 机器人,2014,36(1):117-128 被引 6    
9.  Erdogan A. Slacking prevention during assistive contour following tasks with guaranteed coupled stability. IEEE/RSJ International Conference on Intelligent Robots and Systems,2012:1587-1594 被引 1    
10.  Shogaki T. Velocity field control with energy compensation toward therapeutic exercise. IEEE International Conference on Robotics and Biomimetics,2014:1572-1577 被引 1    
11.  Moreno-Valenzuela J. On passive velocity field control of robot arms. 45th IEEE Conference on Decision and Control,2006:2955-2960 被引 1    
12.  Erdogan A. Passive velocity field control of a forearm-wrist rehabilitation robot. IEEE International Conference on Rehabilitation Robotics,2011:936-951 被引 2    
13.  Yamakita M. Passive velocity field control of biped walking robot. IEEE Conference on Robotics and Automation,2005:3057-3062 被引 1    
14.  Ha C. Preliminary results on passive velocity field control of quadrotors. 29th URAI International Conference,2012:378-379 被引 1    
15.  Chen C Y. Velocity field control and adaptive virtual plant disturbance compensation for planar contour following tasks. IET Control Theory and Applications,2012,6(9):1182-1191 被引 2    
16.  Osa T. Hybrid control of master-slave velocity control and admittance control for safe remote surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems,2014:1328-1334 被引 2    
17.  Pham C D. Singularity analysis of robotic manipulators with velocity-constraints for minimally invasive surgery. IEEE International Conference on Robotics and Biomimetics,2015:1415-1420 被引 1    
18.  Anon. TX60 6-axis industrial robots,2015 被引 1    
19.  Song G L. Dynamic tracking of minimally invasive spine surgery robot. IEEE International Conference on Robotics and Biomimetics,2013:1462-1467 被引 1    
20.  Anon. NDI measurement solutions in medical, Polaris family of optical tracking systems,2015 被引 1    
引证文献 5

1 路明 脊柱微创主从式手术机器人阻抗控制系统研制 机器人,2017,39(3):371-376
被引 1

2 唐宇存 基于虚拟夹具的手术机器人导纳控制安全策略 机器人,2019,41(6):842-848
被引 3

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号