帮助 关于我们

返回检索结果

属力学行为中应变路径效应的研究进展
Development of strain path effects on the mechanical behaviors of metals

查看参考文献84篇

赵天章 1   张士宏 2   程明 2   张凌云 1  
文摘 在塑性加工中,金属的力学行为强烈依赖于所经历的应变路径;另外,有限元数值计算领域对应变路径效应的研究需求也越来越迫切。因此,应变路径效应的研究重新受到研究者的关注。结合文献调研和研究经历,详细介绍了目前应变路径效应的研究进展。首先介绍了应变路径的表征方法,并分析了各个表征方法的适用范围和局限性。其次,综述了应变路径对金属力学行为的影响规律,分析了导致应变路径效应的微观机理,并介绍了现有的几种考虑应变路径效应的数值模型,以及应变路径效应在塑性加工技术中的应用。最后,对金属材料力学行为中应变路径效应未来的研究方向进行了展望。
其他语种文摘 During metal plastic forming, the mechanical behavior strongly depends on the strain path. In addition, the investigation of strain path effects is demanded more and more urgently in finite element numerical calculation. Therefore, it attracts many concerns again recently. Based on the literature survey and investigating experience, the development of strain path effects was introduced in detail. Firstly, the expression of strain path was introduced, and its application and localization were analyzed. Secondly, the influence of strain path on mechanical behaviors of metal was reviewed, and the micro mechanisms were also analyzed. Then, several numerical models considering strain path effects were introduced, and the applications of strain path effects in metal forming technology were reviewed. Finally, the prospects of future research direction for strain path effects in mechanical behaviors of metal were given.
来源 锻压技术 ,2016,41(10):1-10 【扩展库】
DOI 10.13330/j.issn.1000-3940.2016.10.001
关键词 应变路径 ; 力学行为 ; 变形 ; 位错 ; 晶体学织构 ; 纤维组织
地址

1. 沈阳航空航天大学, 航空制造工艺数字化国防重点学科实验室, 辽宁, 沈阳, 110136  

2. 中国科学院金属研究所, 辽宁, 沈阳, 110016

语种 中文
文献类型 综述型
ISSN 1000-3940
学科 金属学与金属工艺
基金 国家自然科学基金资助项目 ;  辽宁省教育厅科学研究计划项目
文献收藏号 CSCD:5829899

参考文献 共 84 共5页

1.  Cetlin P. The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing. Metallurgical and Materials Transactions A,2003,34(3):589-601 被引 2    
2.  Skolyszewski A. Some problems of multi-stage fine wire drawing of high-alloy steels and special alloys. Journal of Materials Processing Technology,1996,60(1):155-160 被引 2    
3.  Schmitt J H. A parameter for measuring the magnitude of a change of strain path: Validation and comparison with experiments on low carbon steel. International Journal of Plasticity,1994,10(5):535-551 被引 4    
4.  Rauch E F. Modelling the plastic behaviour of metals under complex loading conditions. Modelling and Simulation in Materials Science and Engineering,2011,19(3):100-106 被引 3    
5.  Van Riel M. Stress-strain responses for continuous orthogonal strain path changes with increasing sharpness. Scripta Materialia,2007,57(5):381-384 被引 1    
6.  Van Den Boogaard A H. Non-proportional deformation paths for sheet metal: experiments and models. 3rd Forming Technology Forum Zurich 2009 - Constitutive Modeling of Kinematic and Anisotropic Hardening Effects for Ductile Materials, Institute of Virtual Manufacturing, ETH Zurich,2009 被引 1    
7.  Van Riel M. Strain Path Dependency in Sheet Metal,2009 被引 1    
8.  尹建成. 应变路径对907A钢力学行为的影响,2002 被引 1    
9.  Barlat F. An alternative to kinematic hardening in classical plasticity. International Journal of Plasticity,2011,27(9):1309-1327 被引 21    
10.  Hasegawa T. "Region of constant flow stress" during compression of aluminium polycrystals prestrained by tension. Scripta Metallurgica,1974,8(8):951-954 被引 1    
11.  Hasegawa T. Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Materials Science and Engineering,1975,20:267-276 被引 1    
12.  Hasegawa T. Effects of stress reversal and thermal recovery on stress vs strain behavior in aluminum. Scripta Metallurgica,1980,14(10):1083-1087 被引 1    
13.  Hasegawa T. Forward and reverse rearrangements of dislocations in tangled walls. Materials Science and Engineering,1986,81:189-199 被引 1    
14.  Li F. Strain path change effects in cube textured aluminium sheet. Acta Metallurgica et Materialia,1991,39(11):2639-2650 被引 1    
15.  Wagoner R H. Plastic behavior of aluminum-killed steel following plane-strain deformation. Metallurgical Transactions A,1983,14(7):1487-1495 被引 2    
16.  Yakou T. Stagnation of strain hardening during reversed straining of prestrained aluminium, copper and iron. Transactions of the Japan Institute of Metals,1985,26(2):88-93 被引 1    
17.  Barlat F. Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample. International Journal of Plasticity,2003,19(8):1215-1244 被引 3    
18.  Rousselier G. A novel approach for anisotropic hardening modeling-Part I: Theory and its application to finite element analysis of deep drawing. International Journal of Plasticity,2009,25(12):2383-2409 被引 2    
19.  Rousselier G. A novel approach for anisotropic hardening modeling-Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material. International Journal of Plasticity,2010,26(7):1029-1049 被引 1    
20.  Hu Z. Work-hardening behavior of mild steel under stress reversal at large strains. International Journal of Plasticity,1992,8(7):839-856 被引 2    
引证文献 2

1 袁士翀 β锻造参数对TC17钛合金组织性能的影响 锻压技术,2018,43(2):14-19
被引 7

2 刘洋 自冲铆接头成形及力学性能数值模拟关键技术研究进展 机械工程学报,2022,58(22):168-185
被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号