帮助 关于我们

返回检索结果

北京冬季雾霾频发期VOCs源解析及健康风险评价
Source Apportionment and Health Risk Assessment of VOCs During the Haze Period in the Winter in Beijing

查看参考文献29篇

刘丹 1   解强 1   张鑫 2   王海林 3   闫志勇 1   杨宏伟 4   郝郑平 1 *  
文摘 采用低温固体吸附采样、热脱附-气相色谱-质谱联用的方法对北京冬季雾霾频发期空气中挥发性有机物(VOCs)进行了连续监测,对以雾霾期为标志划分的4个阶段的VOCs浓度水平与组成变化特征进行了分析研究,利用正矩阵因数分解模型(positive matrix factorization, PMF)对VOCs的可能来源进行解析,并进行了健康风险评价.结果表明,VOCs的日均浓度为332.34 μg·m~(-3),苯系物和卤代烃在研究区域大气环境的VOCs中含量占主导地位;冬季雾霾的主要污染物排放源为溶剂/涂料使用及机动车尾气排放;区域所检出的致癌性VOCs的致癌风险均超过了EPA给出的风险限值.
其他语种文摘 A method for determining volatile organic compounds (VOCs) by cryogenic dynamic adsorption in solid adsorbent tubes, subsequent thermal desorption with cryofocusing in a cold trap and analysis by gas chromatography and mass spectrometry was adapted for continuous ambient air monitoring. VOCs pollution characteristics and health risk assessment (HRA)were researched in detail. Moreover, the sources apportionment was reliably analyzed by positive matrix factorization (PMF) model. The results showed that the average concentration of VOCs was 332.34 μg·m~(-3) per day, the concentrations of aromatic hydrocarbon and halo hydrocarbon were remarkably high compared to the other VOCs. Particularly, the PMF analysis results revealed that solvent/paint use emission, biomass or coal combustion and motor vehicle exhaust emissions were the main pollutants emission sources. Additionally, the cancer risk index of all carcinogenic substances was higher than the suggested value of USEPA(1×10~(-6)) , which could cause potential harm to human health.
来源 环境科学 ,2016,37(10):3693-3701 【核心库】
DOI 10.13227/j.hjkx.2016.10.003
关键词 雾霾 ; 挥发性有机物 ; 源解析 ; PMF模型 ; 健康风险评价
地址

1. 中国矿业大学(北京)化学与环境工程学院, 北京, 100083  

2. 中国科学院生态环境研究中心环境纳米材料与技术研究室, 北京, 100085  

3. 北京市环境保护科学研究院, 北京, 100037  

4. 内蒙古师范大学化学与环境科学学院, 呼和浩特, 100037

语种 中文
文献类型 研究性论文
ISSN 0250-3301
学科 环境污染及其防治;环境质量评价与环境监测
基金 国家环境保护公益性行业科研专项 ;  国家自然科学基金重点项目 ;  中国科学院战略性先导科技专项
文献收藏号 CSCD:5829235

参考文献 共 29 共2页

1.  Hatfield M L. Secondary organic aerosol from biogenic volatile organic compound mixtures. Atmospheric Environment,2011,45(13):2211-2219 被引 37    
2.  Zhao Y L. Intermediate-volatility organic compounds: a large source of secondary organic aerosol. Environmental Science & Technology,2014,48(23):13743-13750 被引 13    
3.  Hung-Lung C. VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmospheric Environment,2007,41(9):1848-1860 被引 3    
4.  Mcneill V F. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols. Environmental Science & Technology,2015,49(3):1237-1244 被引 11    
5.  Millet D B. Nighttime chemistry and morning isoprene can drive urban ozone downwind of a major deciduous forest. Environmental Science & Technology,2016,50(8):4335-4342 被引 4    
6.  Afroz R. Review of air pollution and health impacts in Malaysia. Environmental Research,2003,92(2):71-77 被引 6    
7.  Li M N. Haze in China: current and future challenges. Environmental Pollution,2014,189:85-86 被引 24    
8.  Bigazzi A Y. Breath biomarkers to measure uptake of volatile organic compounds by bicyclists. Environmental Science & Technology,2016,50(10):5357-5363 被引 7    
9.  李雷. 广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价. 环境科学,2013,34(12):4558-4564 被引 59    
10.  周裕敏. 北京城乡结合地空气中挥发性有机物健康风险评价. 环境科学,2011,32(12):3566-3570 被引 41    
11.  Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems,1997,37(1):23-35 被引 113    
12.  Clarke K. Chemical mass balance model applied to an olfactory annoyance problematic. Environmental Science & Technology,2014,48(20):12118-12125 被引 1    
13.  郑玫. 中国PM2.5来源解析方法综述. 北京大学学报(自然科学版),2014,50(6):1141-1154 被引 84    
14.  Hopke P K. Recent developments in receptor modeling. Journal of Chemometrics,2003,17(5):255-265 被引 31    
15.  Sarkhosh M. Source apportionment of volatile organic compounds in Tehran, Iran. Bulletin of Environmental Contamination and Toxicology,2013,90(4):440-445 被引 6    
16.  Suwattiga P. Seasonal source apportionment of volatile organic compounds in Bangkok ambient air. Science Asia,2005,31(4):395-401 被引 2    
17.  Helmig D. Ozone removal techniques in the sampling of atmospheric volatile organic trace gases. Atmospheric Environment,1997,31(21):3635-3651 被引 6    
18.  Srivastava A. Air toxics in ambient air of Delhi. Atmospheric Environment,2005,39(1):59-71 被引 8    
19.  Baldasano J M. Applying receptor models to analyze urban/suburban VOCs air quality in Martorell (Spain). Environmental Science & Technology,1998,32(3):405-412 被引 11    
20.  南淑清. 郑州市环境空气中VOCs的空间分布及源解析. 环境科学与技术,2015,38(3):119-124 被引 8    
引证文献 34

1 梁林林 临安夏季霾和清洁天气PM_(2. 5)化学组成特征比较 环境科学,2018,39(7):3042-3050
被引 7

2 黄光球 结构解析型神经Petri网模型及其在雾霾危害性评价中的应用 安全与环境学报,2017,17(4):1554-1562
被引 1

显示所有34篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号