帮助 关于我们

返回检索结果

山地遥感主要研究进展、发展机遇与挑战
Progresses, opportunities, and challenges of mountain remote sensing research

查看参考文献150篇

文摘 山地遥感是研究在山地这一特定环境中的遥感基本原理、方法及其应用的科学技术。从山地遥感研究的基本内涵出发,总结面临的若干前沿科学问题,指出当前主要研究内容:(1)电磁波与山地地表相互作用机理及建模理论;(2)山地遥感数据时—空—谱归一化处理方法;(3)山地地表信息遥感建模、反演与同化方法;(4)山地遥感尺度效应与算法/产品验证;(5)山地遥感信息综合应用等。从山地遥感研究的基础理论方法以及山地遥感应用两个层面回顾了近年来山地遥感研究取得的进展,并就新时代背景下山地遥感研究面临的机遇与挑战进行了分析,最后对山地遥感研究前景进行了展望。
其他语种文摘 Global mountainous areas account for about 24 percent of the total global terrestrial area. The mountain area in China makes up approximately 65 percent of the national land area. Thus, China can be described as a mountainous country. Mountains are an important resource foundation and are a vital ecological defense for the existence and development of human beings. However, because of the special energy gradients, mountainous regions are centralized areas for the development of natural hazards. Besides, mountainous areas also serve as a sensitive indicator for global change studies because of their vertical environment gradient. Mountainous areas has become a hotspot and area of focus for many earth system studies. Remote sensing is one of the most important and effective tools for mountain studies. It can provide continuous spatio-temporal land cover, feature status, and historical change information. However, given the dramatically different geometric characteristics of mountainous surface and the various special ecosystem structures and functions, remote sensing applications in mountainous areas still face many challenges and difficulties, including serious geometric and radiometric distortion problems, more complex energy balance process, and more prominent ill-condition retrieving problem for ecosystem parameters than that of the plain area. Mountain remote sensing, which mainly focuses on the basic theories, methodologies, and integrated applications of remote sensing in mountainous environments, is a research branch of the remote sensing science. Although the word “mountain remote sensing” firstly began to be used in the middle 1980s, the research on remote sensing in mountainous areas can be tracked back to nearly 100 years ago because topographic mapping began early in the photogrammetry remote sensing field. In recent decades, issues regarding the basic theories and integrative applications of mountain remote sensing have attracted worldwide attention. Mountain remote sensing has become one of the most popular research areas in remote sensing sciences. We summarized the scientific significance and several frontier issues in mountain remote sensing studies. Currently, the main contents of mountain remote sensing research should include but not be limited to the following aspects:(1) the interaction mechanism and modeling theory between electromagnetic signatures and mountain land surfaces;(2) spatial–temporal–spectral normalization methodologies for mountainous remote sensing data;(3) remote sensing modeling, retrieving, and assimilation methodologies for land surface information in mountainous areas;(4) scaling effects and the validation of remote sensing products in mountainous areas; and(5) the integrated applications of remote sensing information in mountain studies. Currently, mountain remote sensing faces unprecedented developing opportunities because of the following reasons:(1) emerging novel remote sensing observation technologies,(2) in-depth development of basic theories and methodologies of mountain remote sensing,(3) driving forces from earth science big data studies, and(4) great application demands of mountain remote sensing. In this work, we reviewed the research progresses of basic theories and applications of mountain remote sensing in recent years, and analyzed the opportunities, challenges, and future prospects of mountain remote sensing in the modern era.
来源 遥感学报 ,2016,20(5):1199-1215 【核心库】
DOI 10.11834/jrs.20166227
关键词 山地遥感 ; 模型 ; 尺度转换 ; 病态反演 ; 数据同化 ; 地形效应
地址

中国科学院水利部成都山地灾害与环境研究所数字山地与遥感应用研究中心, 四川, 成都, 610041

语种 中文
文献类型 研究性论文
ISSN 1007-4619
学科 自动化技术、计算机技术
基金 国家自然科学基金项目 ;  中国科学院“百人计划”项目 ;  中国科学院战略性先导科技专项 ;  中国科学院国际合作重点项目
文献收藏号 CSCD:5824354

参考文献 共 150 共8页

1.  Ali M A. Automatic registration of SAR and visible band remote sensing images. Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium,2002:1331-1333 被引 1    
2.  Aurdal L. Use of hidden Markov models and phenology for multitemporal satellite image classification: applications to mountain vegetation classification. Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images,2005:220-224 被引 1    
3.  鲍晨光. 地形校正对森林生物量遥感估测的影响. 应用生态学报,2009,20(11):2750-2756 被引 10    
4.  Beniston M. Climatic change in mountain regions: a review of possible impacts. Climate Variability and Change in High Elevation Regions: Past, Present & Future,2003:5-31 被引 2    
5.  Bian J H. Auto-registration and Orthorecification Algorithm for the Time Series HJ-1A/B CCD Images. Journal of Mountain Science,2013,10(5):754-767 被引 6    
6.  Bian J H. Development of dense time series 30-m image products from the Chinese HJ-1A/B constellation: a case study in Zoige Plateau, China. Remote Sensing,2015,7(12):16647-16671 被引 1    
7.  边金虎. MODIS植被指数时间序列Savitzky-Golay滤波算法重构. 遥感学报,2010,14(4):725-741 被引 78    
8.  Blackard J A. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment,2008,112(4):1658-1677 被引 28    
9.  Campos N. Effects of LiDAR-Quickbird fusion on object-oriented classification of mountain resort development. Journal of Applied Remote Sensing,2010,4(1):043556 被引 2    
10.  Carreiras J M B. SPOT-4 VEGETATION multi-temporal compositing for land cover change studies over tropical regions. International Journal of Remote Sensing,2005,26(7):1323-1346 被引 1    
11.  Cassells G F. The use of ALOS PALSAR for supporting sustainable forest use in southern Africa: a case study in Malawi. Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium,2009:II-206-II-209 被引 1    
12.  Cavayas F. Modelling and correction of topographic effect using multi-temporal satellite images. Canadian Journal of Remote Sensing,1987,13(2):49-67 被引 5    
13.  Chance C M. Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites. International Journal of Applied Earth Observation and Geoinformation,2016,44:186-194 被引 2    
14.  Chandrasekhar S. Radiative Transfer,1960 被引 57    
15.  Chen C X. Improving classification of woodland types using modified prior probabilities and Gaussian mixed model in mountainous landscapes. International Journal of Remote Sensing,2013,34(23):8518-8533 被引 2    
16.  Chen J M. Multiangular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment,2003,84(4):516-525 被引 25    
17.  陈宁生. 物联网技术在山地灾害监测预警中的应用-需求、现状、问题与突破展望. 自然杂志,2014,36(5):352-355 被引 1    
18.  陈清莲. HY-1卫星水色扫描仪的辐射定标与真实性检验. 海洋技术,2003,22(1):1-9 被引 4    
19.  陈述彭. 遥感地学分析的时空维. 遥感学报,1997,1(3):161-171 被引 26    
20.  Chen X W. Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing,2002,23(1):107-124 被引 4    
引证文献 12

1 谢馨瑶 大尺度森林碳循环过程模拟模型综述 生态学报,2018,38(1):41-54
被引 17

2 黄春波 长江三峡库区土地利用/覆盖的长期变化 应用生态学报,2018,29(5):1585-1596
被引 15

显示所有12篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号