帮助 关于我们

返回检索结果

AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为
MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS

查看参考文献30篇

文摘 将Zn和Y元素以原子比为6∶1的形式加入AM50合金中,并采用金属型铸造成形,利用OM, SEM, EDS, XRD,热分析法及拉伸实验研究了AM50-x(Zn, Y) (x=0, 2, 3, 4, 5,质量分数, %)合金的显微组织、凝固行为及力学性能.结果表明:向AM50合金中按原子比为6∶1的形式加入Zn和Y元素后,组织得到明显细化,组织中并未形成Mg_3Zn_6Y准晶相,而是形成了颗粒状的Al_6YMn_6相和细小的Al_2Y相,其中Al_6YMn_6相尺寸随着Zn和Y元素含量的增加而增大;当x≥3时,在组织中b相的周围逐渐形成层片状的Φ-Mg_(21)(Zn, Al)_(17)相,且其数量逐渐增加.热分析结果表明, Φ-Mg_(21)(Zn, Al)_(17)相约在354 ℃通过包晶反应形成,其中α-Mg和b相析出温度随着x的增加而降低.由于Al_6YMn_6相、Al_2Y相和Φ-Mg_(21)(Zn, Al)_(17)相的形成,使得b相的尺寸减小、数量减少;当x= 4时,合金组织最为细小,且合金力学性能达到最优,其抗拉强度、屈服强度和伸长率分别为206.63 MPa, 92.50 MPa和10.04%.
其他语种文摘 As the lightest metallic structural material, magnesium alloys were widely used in automotive, aerospace, electronic equipment and other fields. Among commercial magnesium alloys,AM series were commonly used due to excellent ductility and energy absorption. However, their relatively poor strength greatly restricted their extended use. In order to improve mechanical properties of AM50 alloy, the Zn and Y elements were added into the AM50 alloy in the form of atomic ratio of 6∶1 by the permanent mold casting. The microstructure, solidification behavior and mechanical properties of AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, mass fraction, %) alloys were investigated by OM, SEM, EDS, XRD, thermal analysis and tensile tests. The results indicated that addition of Zn and Y elements with an atomic ratio of 6∶1 to AM50 alloy, the microstructures were obviously refined, and the quasicrystal I-phase (Mg_3Zn_6Y) cannot form. In addition, the granular Al_6YMn_6 phase and fine Al_2Y phase were formed in the microstructure, and the size of Al_6YMn_6 phase increased with increasing the Zn and Y content. The Φ-Mg_(21)(Zn, Al)_(17) phase with lamellar structure was formed around β phase when x≥3, and its amount increased with increasing the Zn and Y addition. Thermal analysis results show that the Φ-Mg_(21)(Zn, Al)_(17) phase was formed at 354 ℃ by the peritectic reaction, in which the precipitation temperatures of α-Mg and β phase were decreased with the increase of x content. Due to the formation of Al_6YMn_6, Al_2Y and Φ-Mg_(21)(Zn, Al)_(17) phases, the size and amount of the β phase was decreased. For AM50-4(Zn, Y) alloy, the microstructure was greatly refined, and the ultimate tensile strength, yield strength and elongation of the alloy reached to the maximum, 206.63 MPa, 92.50 MPa and 10.04%, respectively.
来源 金属学报 ,2016,52(9):1115-1122 【核心库】
DOI 10.11900/0412.1961.2016.00048
关键词 镁合金 ; AM50 ; 显微组织 ; 热分析 ; 力学性能
地址

沈阳工业大学材料科学与工程学院, 沈阳, 110870

语种 中文
文献类型 研究性论文
ISSN 0412-1961
学科 金属学与金属工艺
基金 国家自然科学基金项目 ;  辽宁省自然科学基金 ;  辽宁省高校创新团队支持计划项目
文献收藏号 CSCD:5802406

参考文献 共 30 共2页

1.  Agnew S R. Scr Mater,2010,63:671 被引 27    
2.  Easton M. JOM,2008,60(11):57 被引 33    
3.  Fechner D. J Mater Sci,2012,47:5461 被引 1    
4.  Kondori B. Mater Sci Eng,2010,527:2014 被引 2    
5.  Unal M. Int J Cast Met Res,2014,27(2):80 被引 1    
6.  Wang Q D. Int J Mater Res,2008,99:761 被引 1    
7.  Wang J L. Mater Sci Eng,2008,472:332 被引 3    
8.  Singh L K. Trans Ind Inst Met,2015,68:331 被引 6    
9.  Kim J M. Mater Sci Eng,2007,449/451:326 被引 1    
10.  Zhang J S. J Alloys Compd,2008,453:309 被引 6    
11.  Bae D H. J Alloys Compd,2002,342:445 被引 70    
12.  Zhang J S. Trans Nonferrous Met Soc China,2010,20:1199 被引 5    
13.  Teng X Y. Adv Mater Res,2011,306/307:582 被引 1    
14.  Wang X D. Mater Sci Eng,2011,530:446 被引 1    
15.  Wang R M. Mater Sci Eng,2003,355:201 被引 3    
16.  Zhang Z. Scr Mater,1998,39:45 被引 58    
17.  Ohno M. Mater Sci Eng,2006,421:328 被引 1    
18.  Wang J L. Trans Nonferrous Met Soc China,2006,16(s1):703 被引 2    
19.  郑伟超. 混合稀土对AZ91D镁合金组织和力学性能的影响. 金属学报,2006,42:835 被引 31    
20.  Pettersen G. Mater Sci Eng,1996,207:115 被引 8    
引证文献 2

1 杜旭东 热处理工艺对Mg-7Al-1Ca-0.5Sn合金力学与腐蚀性能的影响研究 稀有金属,2019,43(12):1283-1290
被引 1

2 王柏宁 铸态与挤压态AM50-4%( Zn,Y)合金组织及力学性能 材料导报,2020,34(10B):20076-20080
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号