帮助 关于我们

返回检索结果

锑的地球化学行为以及锑同位素研究进展
Research Progress on Sb Geochemistry and Sb Isotopes

查看参考文献28篇

文摘 锑被广泛用于生产各种阻燃剂、玻璃、橡胶、颜料、陶瓷、半导体原件等。锑在火成岩中属于分散元素,但可以富集在沉积岩中(如深海黏土、页岩及碎屑岩) 。锑常出现在与辉长质深成岩有关的岩浆硫化物矿床、与花岗岩有关的硫化物矿床、碎屑岩-碳酸岩赋矿的钨-锑-汞层控矿床及热液铅锌矿床中。目前高精度锑同位素的分析测试方法已基本成熟,即酸溶、阳离子树脂交换柱结合硫醇棉纤维法或阴阳离子交换柱法分离富集锑、氢化物发生器MC -ICP -MS测定锑同位素。仪器的质量歧视校正通常采用标样-样品匹配法、In内标法和Sn内标法。不同地质储库端元的锑同位素组成变化较大(达18),海水为~ 3.7,硅酸岩为0.9 ~ 2.9,硫化物(辉锑矿、闪锌矿、黄铁矿、白铁矿)为-1.9 ~ 16.9。且来自不同国家的辉锑矿具有不同的锑同位素组成,不同产地玻璃的锑同位素组成也不同。锑同位素在氧化还原过程(或硫化物沉淀)和无机吸附过程会发生明显分馏,分别达~ 9和~ 4。因此,锑同位素有可能作为一种灵敏的地球化学示踪剂,对示踪成矿物质来源、刻画与氧化还原等过程有关的成矿过程和探讨矿床形成机理、矿区重金属锑污染的治理以及考古等方面具有重要指示作用。
其他语种文摘 Antimony (Sb) has been widely used in products such as fire retardants, glass, rubber, paint, ceramics and semiconductors. It is found throughout igneous rocks but can be enriched in sedimentary rocks such as abysmal clays,shales and clastic rocks. Sb commonly occurs in magmatic sulfide deposits related to gabbroic rocks, sulfide deposits related to granitic rocks,clastic rocks and carbonate rocks hosted in stratified W-Sb-Hg deposits, and hydrothermal Pb-Zn deposits. The analytical method of high precision determination of Sb isotopes is now available. Samples are commonly digested with different types of acids,and Sb is separated and concentrated by cation exchange column combined with Thiol cotton fiber or both anion and cation exchange columns. Sb isotopes are determined by MC-ICP-MS coupled with hydride generation. The mass discrimination of equipment is commonly corrected by sample standard bracketing,using In and Sn internal standards. Different geological reservoirs have variable Sb isotope compositions (up to 18),with seawater of about 3.7,silicate rocks of 0.9 to 2.9,and sulfides (stibnite,sphalerite,pyrite,marcasite) of -1.9 to 16.9. Moreover,stibnites from different countries have different Sb isotope compositions. Glass from different places of production also shows different Sb isotope compositions. Sb isotopes will fractionate up to about 9 and 4 during oxide-reduction process (or sulfide precipitation) and inorganic absorption process,respectively. Therefore,Sb isotopes may serve as a geochemical tracer,which play an important role in indicating the source of ore-forming materials,portraying the ore-forming process and revealing the ore-forming mechanism. This isotope system can also be used to trace heavy metal pollution and can be used in archaeology.
来源 岩矿测试 ,2016,35(4):339-348 【核心库】
DOI 10.15898/j.cnki.11-2131/td.2016.04.002
关键词 锑同位素 ; 地球化学 ; 非传统稳定同位素 ; 同位素分馏
地址

中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081

语种 中文
文献类型 综述型
ISSN 0254-5357
学科 化学
基金 国家自然科学基金重点项目 ;  中国科学院地球化学研究所博士科研启动基金 ;  中国科学院地球化学研究所矿床地球化学国家重点实验室“十二五”项目
文献收藏号 CSCD:5785069

参考文献 共 28 共2页

1.  刘英俊(编著). 元素地球化学,1984 被引 1    
2.  Zhu X. Determination of Natural Cu-isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Tracers. Chemical Geology,2000,163(1):139-149 被引 2    
3.  Mason T F D. Zn and Cu Isotopic Variability in the Alexandrinka Volcanic-hosted Massive Sulphide (VHMS) Ore Deposit,Urals,Russia. Chemical Geology,2005,221(3):170-187 被引 39    
4.  John S G. Zinc Stable Isotopes in Seafloor Hydrothermal Vent Fluids and Chimneys. Earth and Planetary Science Letters,2008,269(1):17-28 被引 28    
5.  Weyer S. High Precision Fe Isotope Measurements with High Mass Resolution MC-ICPMS. International Journal of Mass Spectrometry,2003,226(3):355-368 被引 23    
6.  Bizzarro M. Mg Isotope Evidence for Contemporaneous Formation of Chondrules and Refractory Inclusions. Nature,2004,431:275-278 被引 8    
7.  Zack T. Extremely Light Li in Orogenic Eclogites:The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust. Earth and Planetary Science Letters,2003,208(3):279-290 被引 35    
8.  Andreae M O. The Determination of the Chemical Species of Some of the'Hydride Elements'(Arsenic,Antimony, Tin,and Germanium) in Seawater:Methodology and Results. NATO Conference Series,1983:1-19 被引 1    
9.  Wang X. Heavy Metal Pollution of the World Largest Antimony Mine-affected Agricultural Soils in Hunan Province (China). Journal of Soils and Sediments,2010,10(5):827-837 被引 9    
10.  Fu Z. Antimony,Arsenic and Mercury in the Aquatic Environment and Fish in a Large Antimony Mining Area in Hunan,China. Science of the Total Environment,2010,408(16):3403-3410 被引 13    
11.  He M. Distribution and Phytoavailability of Antimony at an Antimony Mining and Smelting Area,Hunan,China. Environmental Geochemistry and Health,2007,29(3):209-219 被引 9    
12.  Jochum K P. Constraints on Earth Evolution from Antimony in Mantle-derived Rocks. Chemical Geology,1997,139(1):39-49 被引 8    
13.  Noll P D. The Role of Hydrothermal Fluids in the Production of Subduction Zone Magmas:Evidence from Siderophile and Chalcophile Trace Elements and Boron. Geochimica et Cosmochimica Acta,1996,60(4):587-611 被引 18    
14.  Qi H. Concentration and Distribution of Trace Elements in Lignite from the Shengli Coalfield, Inner Mongolia,China:Implications on Origin of the Associated Wulantuga Germanium Deposit. International Journal of Coal Geology,2007,71(2/3):129-152 被引 3    
15.  Rouxel O. Antimony Isotope Variations in Natural Systems and Implications for Their Use as Geochemical Tracers. Chemical Geology,2003,200(1):25-40 被引 5    
16.  刘海臣. 湘西板溪群及冷家溪群的时代研究. 科学通报,1994,39(2):148-150 被引 30    
17.  张宝贵. 中国主要层控汞锑砷(雄黄,雌黄)矿床分类成矿模式与找矿. 地球化学,1989(2):131-138 被引 7    
18.  Han R S. Geological Features and Origin of the Huize Carbonate-hosted Zn-Pb-(Ag) District,Yunnan,South China. Ore Geology Reviews,2007,31(1/4):360-383 被引 64    
19.  王泽鹏. 贵州省西南部低温矿床成因及动力学机制研究-以金锑矿为例,2013 被引 1    
20.  余金杰. 锑矿床研究若干问题初探. 矿床地质,2000,19(2):166-172 被引 6    
引证文献 9

1 赵博 锑同位素测试方法及其应用研究 矿物岩石地球化学通报,2018,37(6):1181-1189
被引 2

2 史凯 地质样品中高精度铬同位素分析纯化技术研究进展 岩矿测试,2019,38(3):341-353
被引 2

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号