帮助 关于我们

返回检索结果

不同上限粒径泥石流浆体的流变参数变化规律
Rheological parameters of debris flow slurries with different maximum grain sizes

查看参考文献22篇

杨红娟 1   韦方强 2   胡凯衡 2   吕娟 2  
文摘 根据云南东川蒋家沟黏性泥石流原样颗分资料,利用泥石流堆积物配置4个黏性泥石流原样对应的上限粒径分别为0.25、1、2、5和10 mm的浆体,通过球系统开展流变试验,利用Herschel-Bulkley模型拟合流变曲线,研究较粗的颗粒加入细颗粒浆体后流变参数的变化规律。结果表明各样品均表现为剪切稀化流体,粗颗粒加入细颗粒浆体后浆体屈服应力增加,剪切稀化程度减弱;同样颗粒级配下,浆体的屈服应力随固体体积浓度指数增加。由于流动性指数的变化,粗颗粒加入后浆体稠度指数的变化没有明显规律,但是表观黏度增加,增幅略小于屈服应力的增幅。粗颗粒浆体与细颗粒浆体的相对黏度和相对屈服应力之间存在显著的线性关系,可根据该关系式对泥石流原样的表观黏度进行估算。
其他语种文摘 According to the grain size distribution of viscous debris flows in Jiangjia Gully of Yunnan Province of China, four groups of debris flow slurries with different maximum grain sizes (0.25, 1, 2, 5 and 10mm) were prepared. Each group corresponds to a specific density of debris flow. Rheological tests were performed with ball measuring system, and rheological parameters were then determined using the Herschel-Bulkley model to study how these parameters vary as coarser grains were added to a finer-grained slurry. The results show that all slurry samples behave as shear-thinning fluids, whereas they become less shear-thinning and exhibit higher yield stress when coarser grains were added. For slurries with the same maximum grain size,yield stress increases exponentially with volumetric solid concentration. There is no distinct relationship between the consistency index and the maximum grain size because of the variation in fluidity index. However, the apparent viscosity increases when coarser grains were added, and the increasing amplitude is a little less than that of the yield stress. A good linear relationship exists between the relative viscosity and the relative yield stress of coarser-grained slurries to fine-grained slurries, which can be used to estimate the apparent viscosity of debris flow.
来源 水利学报 ,2016,47(7):884-890 【核心库】
DOI 10.13243/j.cnki.slxb.20150931
关键词 泥石流 ; 浆体 ; 流变参数 ; Herschel-Bulkley模型 ; 蒋家沟 ; 球系统
地址

1. 中国科学院水利部成都山地灾害与环境研究所, 中国科学院山地灾害与地表过程重点试验室, 四川, 成都, 610041  

2. 中国科学院水利部成都山地灾害与环境研究所, 四川, 成都, 610041

语种 中文
文献类型 研究性论文
ISSN 0559-9350
学科 地质学
基金 中国科学院重点部署项目 ;  国家自然科学基金项目 ;  中科院山地所“青年百人团队”项目
文献收藏号 CSCD:5765170

参考文献 共 22 共2页

1.  吴积善. 粘性泥石流的泥深与残留层关系及其确定. 泥沙研究,2003(6):7-12 被引 8    
2.  Parsons J D. Experimental study of the grain-flow,fluid-mud transition in debris flows. The Journal of Geology,2001,109(4):427-447 被引 15    
3.  Genevois R. Image analysis for debris flow properties estimation. Physics and Chemistry of the Earth:C,2001,26(9):623-631 被引 4    
4.  Phillips C J. Determining rheological parameters of debris flow material. Geomorphology,1991,4(2):101-110 被引 9    
5.  Coussot P. A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. Journal of Rheology,1995,39(1):105-124 被引 6    
6.  王裕宜. 粘性泥石流应力应变特征的初步试验研究. 山地学报,2002,20(1):42-46 被引 4    
7.  Bagnold R A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London,Series A,1954,225(1160):49-63 被引 85    
8.  Krieger I M. A Mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology,1959,3(1):137-148 被引 50    
9.  Mahaut F. Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. Journal of Rheology,2008,52(1):287-313 被引 6    
10.  Boyer F. Unifying suspension and granular rheology. Physical Review Letters,2011,107(18):188-301 被引 12    
11.  O'Brien J S. Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering,1988,114(8):877-887 被引 28    
12.  Major J J. Debris flow rheology:experimental analysis of fine-grained slurries. Water Resources Research,1992,28(3):841-857 被引 20    
13.  Ancey C. Yield stress for particle suspensions within a clay dispersion. Journal of Rheology,2001,45(2):297-319 被引 6    
14.  Coussot P. Direct determination of rheological characteristics of debris flow. Journal of Hydraulic Engineering,1998,124(8):865-868 被引 9    
15.  Sosio R. Rheology of concentrated granular suspensions and possible implications for debris flow modeling. Water Resources Research,2009,45(3):W03412 被引 9    
16.  Muller M. Rheological characterization of machine-applied plasters. ZKG International,1999,52(5):252-258 被引 2    
17.  Schatzmann M. Rheometry for large-particulated fluids:analysis of the ball measuring system and comparison to debris flow rheometry. Rheologica Acta,48(7):715-733 被引 5    
18.  Zhang S. A comprehensive approach to the observation and prevention of debris flows in China. Natural Hazards,1993,7(1):1-23 被引 11    
19.  费祥俊. 黄河中下游含沙水流粘度的计算模型. 泥沙研究,1991(2):1-13 被引 18    
20.  Coussot P. The effects of an addition of force-free particles on the rheological properties of fine suspensions. Canadian Geotechnical Journal,1995,32(2):263-270 被引 1    
引证文献 11

1 王飞 一次洪水过程的泥石流物源体侵蚀机制试验 哈尔滨工业大学学报,2017,49(12):131-136
被引 0 次

2 杨愧 泥石流屈服应力测试的塌落度法 水文地质工程地质,2018,45(1):151-157
被引 1

显示所有11篇文献

论文科学数据集

1. 泥石流冲击特性试验数据(2019-2021)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号